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ABSTRACT Abdominal Aortic Aneurysm (AAA) is a vascular disease characterized by abnormal dilation of
the lower segment of the aorta (abdominal aorta), resulting from structural weakening and deformation of the
aortic wall. Advanced imaging techniques, such as Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI), provide rich representations of a subject’s clinical condition, while recent studies have
explored automated decision support using Deep Learning (DL). This review aims to summarize the current
research efforts applying DL to AAA volumetric imaging, focusing on core tasks such as classification,
detection, segmentation, and quantification. The methodology entails a systematic analysis of the relevant
literature to focus on the types of DL architectures in use and preprocessing techniques commonly employed
in decision support pipeline. In total, 67studies are reviewed. The reviewed studies report a wide variety of
DL architectures, with segmentation tasks achieving high performance often exceeding 90% in evaluation
metrics such as the Dice Similarity Coefficient. This review provides a comprehensive overview of present-
day capabilities and limitations as the base for further work on DL-based AAA decision support systems.

INDEX TERMS Aneurysm, Abdominal Aortic Aneurysm, Deep Learning, Deep Neural Networks, Com-
puted Tomography, Magnetic resonance imaging, Medical imaging, Image processing, Convolutional Neural
Networks, Artificial Intelligence in Healthcare

I. INTRODUCTION

BDOMINAL Aortic Aneurysm (AAA) is a progressive
vascular condition, typically characterized by a local-
ized dilation of the abdominal aorta, which is defined by an
increase in diameter of 50 % compared to the healthy aorta.
This condition is usually asymptomatic and is often not diag-
nosed until rupture, which is associated with a high mortality
rate, with estimates ranging from 50% to 90%. [1], [2] AAA
has a high mortality rate and an increasing prevalence along
aging. Smoking, male sex, and a positive family history are
the main risk factors for AAA [3]. Pathophysiologically, an
AAA results from structural degeneration of the aortic wall,
including thinning of the adventitia and media, extracellular
matrix breakdown, and apoptosis of smooth muscle cells.
Early diagnosis and accurate assessment of AAA progres-
sion are crucial, since rupture risk increases with aneurysm
diameter and causes a potentially fatal intraabdominal hem-
orrhage. Patients with AAA ruptures record a 65-85% death
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rate. AAAs can rupture at any size; however, the risk of
rupture increases with diameter [4]. The size and growth rate
of aneurysms affect the management techniques, and open
surgery or endovascular aneurysm repair are two possible
treatments [5].

Imaging plays a pivotal role in the diagnosis, treatment
planning and follow-up management of AAA. Ultrasound is
the most recommended tool as the first screening method,
given its excellent sensitivity and specificity in combination
with overall safety and cost-effectiveness. Computed Tomog-
raphy Angiography (CTA)[6] is considered the gold stan-
dard for preoperative planning and surveillance, providing
detailed information on the morphology of the aneurysm
and the surrounding structures. CTA offers superior spatial
resolution, making it possible to precisely measure the size
of the aneurysm and visualize the aortic architecture in great
detail [7]. Magnetic Resonance Imaging (MRI), though less
commonly utilized, shows promise for future use in AAA
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evaluation and rupture risk prediction [8].

In recent years, the availability of advanced imaging data
has motivated the development of automated analysis tools,
with Deep Learning (DL) emerging as a key technology. DL
techniques, Convolutional Neural Networks (CNNs), in par-
ticular, have demonstrated great promise in automating AAA-
related tasks such as calcifications, thrombus, and aneurysmal
lumen segmentation [9], [10], [11]. Additionally, DL models
have shown good accuracy in a variety of clinical situations
for risk prediction and disease progression forecasting [12],
[13], [14].

Despite these promising advances, significant challenges
remain. The lack of large, annotated datasets limits the train-
ing and generalization of DL models. Most publicly available
datasets are institution-specific and lack diversity, which hin-
ders cross-center reproducibility. Moreover, technical barri-
ers, such as variations in imaging protocols, scanner config-
urations further complicate model deployment. In addition,
the "black-box" nature of DL models further complicates
clinical adoption. Regulatory approval and interpretability
remain pressing concerns for real-world deployment.

As a result, a thorough evaluation of the state of DL ap-
plications in AAA imaging continues to be necessary. Even
though a number of studies present promising results, a thor-
ough synthesis is required to comprehend the approaches
used, spot performance patterns, and point out any gaps that
should be filled by further study.

The purpose of this systematic review is to summarize
recent findings on the use of volumetric imaging modali-
ties Computed Tomography (CT) [15], Computed Tomog-
raphy Angiography[16] and the broader domain of Con-
trast Enhanced Computer Tomography (CECT) techniques,
so as the Non-Constrast CT (NCCT), Magnetic Reasonance
Imaging[17], and Positron Emission Tomography (PET/CT)
[18]) for the analysis of AAA based on DL. In order to iden-
tify trends, limits, and future research paths toward clinically
deployable decision support systems, we provide an overview
of the DL architectures employed, tasks (segmentation, detec-
tion, and classification), and preprocessing pipelines.

Il. RESEARCH METHODOLOGY

This work is carried out according to the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA)
[19] Guidelines in order to acquire relevant research. The
authors also performed a comprehensive screening procedure,
and further quantitatively evaluate the risk of bias of each
included study and to determine the eligibility of the articles
and their robustness to construct a reliable solution to the
problem of interest: the Abdominal Aortic Aneurysm (AAA)
screening. The researchers’ observations and considerations
were settled by a thorough discussion. Finally, a detailed Risk
of Bias assessment was performed to quantitatively measure a
number of known researchers’concerns about the’ robustness
and applicability of DL models, following the outline of
QUADAS-II [20] system to evaluate all distinct pipelines on
the performance of their DL modules.

2

A. DATA SOURCES

In February 2025, a thorough search was conducted to obtain
all pertinent papers published in the last decade from the
literature. The search was performed in the databases:

1) Science Direct

2) IEEEXplore

3) Scopus

4) PubMed

The query ("deep learning” OR "cnn" OR convolutional
OR transformer) AND (mri OR CT OR cta) AND (abdominal
aortic aneurysm) was applied across all databases for the
keyword query defined, due to the limitation of 8 Boolean
operators found, for the same query to be defined in every
database of interest. This query includes keywords for the
search terms of interest, while several extra meaningful word
variations were applied where possible, forming the extended
string: (“deep learning” OR “cnn” OR “convolutional” OR
“transformer”) AND (“mri” OR “magnetic resonance imag-
ing” OR “ct” OR “Computed tomography” OR “cta” OR
“Computed tomography angiography”) AND (“abdominal”
AND (“aortic” OR “aorta”) AND “aneurysm”).

The objective of this search was to identify studies pub-
lished in the past decade that focus on the application of DL
techniques for the detection or segmentation of abdominal
aortic aneurysms in biomedical imaging and early diagnosis.
All retrieved papers were screened with the use of Rayyan
software [21]. Rayyan is an online software specifically de-
signed to support the conduct of systematic reviews and other
types of literature reviews. It features a user-friendly interface
that enables reviewers to import and manage articles, collab-
orate seamlessly with team members, and efficiently screen
and categorize studies according to predefined inclusion and
exclusion criteria.

A total of 1,921 papers were retrieved. Duplicate entries
were identified and removed, and studies that did not meet the
inclusion criteria were excluded from further consideration.
After the first filtering stage, 1,001 unique articles remained.
The next step involved screening for titles and abstracts to
assess how relevant each study was to the research question.
This was done based on some predefined eligibility criteria to
find out which studies used DL methods to detect or segment
AAA from medical images. As a result, 97 articles were
selected for full-text review to determine inclusion in the final
analysis. Fig. 1 shows the PRISMA flow diagram.

B. INCLUSION CRITERIA

This review focuses on deep learning-based approaches ap-
plied in biomedical imaging for the detection or segmenta-
tion of AAA or the aneurysmal region. The following major
inclusion criteria were used to choose the studies of interest:

1) Use of real (non-synthetic) medical images acquired
from CT, CTA, MRI, or multimodal imaging including
at least one of these modalities.

2) Application of DL algorithms and image processing
methods for detection or segmentation tasks.
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“abdominal” AND ( “aortic” OR “aorta”) AND “aneurysm”)
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Reports sought for retrieval Reports not retrieved
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(n=281) Reports excluded: 13
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Language
Simulated/Synthetic Data
Wrong Study Design
—J

Reports of included studies
(n=67)

FIGURE 1. PRISMA Flowchart presenting search query, search strategy
followed, database selection, screening process, and exclusion criteria
applied to this review.

3) Inclusion of patients who have been diagnosed with
AAA, as confirmed by radiological imaging data.

This review consists of studies using various DL techniques
(e.g., Convolutional Neural Networks, Transformers, Yolov8)
applied in real imaging data. The purpose of this review is to
provide an overview of recent advances, current challenges,
and potential clinical applications of deep learning-based ap-
proaches for AAA detection and segmentation in biomedical
imaging, with particular emphasis on the use of real-world
medical data and the importance of accurate and automated
analysis for improved diagnostic support.

C. EXCLUSION CRITERIA

A number of publications were excluded from this review
according to the following criteria:

1) Review articles (these studies have been used for com-
parison purposes)

2) Book chapters and Encyclopedias

3) Meta-Analysis articles

4) Conference info

5) Non-English Articles

6) Dataset Description Papers

7) Research on animals or cell level

8) NOT Abdominal Aortic Aneurysm

9) Another type of aneurysm or cardiovascular disease

VOLUME XX, 2025

10) Focuses on another imaging technique (PET, Ultra-
sound)

11) NOT Image Processing

12) No DL techniques applied

13) Focuses on CFD technology

14) No model training

15) Synthetic data

16) Not reporting results

D. DATA SYNTHESIS

A total of 67 studies met the inclusion criteria and were
included in the final review. The relevant data extracted
from these studies were systematically analyzed to assess the
methodologies, performance metrics, and clinical applicabil-
ity.

The eligibility criteria are implemented in the last phase.
To determine eligibility, more than two distinguished inde-
pendent researchers skimmed the publications. At first, the
researchers read the abstract and title of the publication, then,
if necessary, particular sections (such as the Methodology
and Discussion) to elucidate the goal and methodology of the
work. Each researcher then presented the primary features of
the experimental publications on a sheet of data extraction.

A detailed data extraction spreadsheet was created to fa-
cilitate easy awareness of the variety of research on deep
learning-based techniques for the diagnosis and segmenta-
tion of AAAs from medical images. The sheet was used to
methodically record and examine important aspects of each
study that was included.

In addition to these basic aspects, the spreadsheet further
includes qualitative remarks on the clinical relevance of each
study, specific goals (segmentation vs. classification), and
network architecture or preprocessing pipeline innovations,
where appropriate. The included articles were also classified
according to the imaging modality (CT, CTA, or multimodal)
used. To ensure transparency and reproducibility, this review
was prospectively registered on the Open Science Framework
(OSF) [22]

E. DEEP LEARNING ANALYSIS

In the following sections, the methods found are examined
for the presence of DL models, the data used, and the se-
mantics that are DL-modeled, as well as their post-processing
extensions that may provide insight on additional semantics
and metrics. In the following sections, the authors extensively
discuss the usage, architecture, and performance of the DL
models, as well as the situations that the researchers model
this way in an AAA decision support system.

Moreover, the authors thoroughly evaluated the data prepa-
ration steps involved in the experimental or model develop-
ment stages, and the automated data preprocessing functions
that complement the decision support by transforming the raw
data input into the desired model input or enhance the deci-
sion making ability. The latter is considered as selected data
transforms of the data format, in order to match the desired
DL network input, or the data quality, in order to enhance the
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model ability to fit the data. Complementary augmentation
methods are seen in the literature, which increase the amount
of data and enhance the performance and robustness of the
model.

In AAA-related decision making support, as in general
data-driven systems, the core data analysis task is classifi-
cation. Within this, some may decide whether a data entity
(image, volume, region) constitutes some specific semantic
of interest. These systems include a predefined taxonomy of
expert-defined classes, where the incoming data have to fit.
The Classification task can be considered as the cornerstone
of the more sophisticated tasks of Detection and Segmenta-
tion, which imply that the data analysis in the respective ab-
stract layer implies the categorization procedure. To the scope
of this review, the DL tasks examined are Classification, De-
tection, Segmentation, Data Generation, and Forecasting, and
we discuss the publications of interest, with respect to the DL,
task that is being employed and the semantics that are being
modeled. In terms of data of interest, on which a model fit,
the authors focus on Advanced Imaging Techniques, which
produce volumetric voxel data, primarily Computed Tomog-
raphy and its variations, but are not bound to it.

Subsequently, the distinct publication "clusters" are: 1.
Classification methods, 2. Object detection methods, 3. Data
Generation methods, which contain works that try to create
representative examples of a specified modality, 4. ROI seg-
mentation methods, which implies methods that use some
detection technique to reduce the region of interest prior to
segmenting an image or volume, 5. Volume segmentation
techniques for modeling the aneurysmal aorta, 6. Single-
class segmentation techniques, which model some specific
aneurysm-related semantics and partially segment the phe-
nomenon of interest, 7. Multiclass Volume segmentation tech-
niques, which model more than two AAA-relevant semantics
to the aneurysm estimation task. The latter refers to works
that are able to distinguish distinct Lumen and Thrombus
pixels, while they may additionally model other anatomical
structures, too, and they also usually segment the entire data
volume.

Regarding the respective results, major representative met-
rics were also recorded to perform a methods’ precision
comparison. The authors tried to reside any common likewise
notes found in manuscripts, as well as to induct metrics of
interest to present a comparative analysis. Specifically, we
consider Accuracy, Precision and Recall as the base metrics to
a thorough evaluation practice, and argue on the effectiveness
of the findings for each study using both the positive and
negative results that the DL researchers published, but also
any insight on misslcassification conditions. Finally, the Dice
Simillarity Coefficient metric (which notably equals the F1-
Score in terms of the Classification Task) was inducted for
all reports that could support it, including cases that reside a
confusion matrix only, or Precision/Recall results.

F. QUALITY ASSESSMENT STATEMENT

In order to assess quantitative insight on the diagnostic ac-
curacy of any research fingings, the authors further follow
an evaluation protocol based on a reasonable number of re-
search concern questions. According to a relevant evaluation
questionaire, the authors try to argue on the robustness of
the models found in this review and their ability to provide
useful solutions as modules to a recent automated diagnosis
system for the delineation of AAA in Advanced imaging
modalities such as Computed Tomography volumes. In this
study, the authors select the QUADAS-II outline to consider
some recent quality concerns and quantify the research found
in the selected review items.

For this purpose, the authors consider the QUADAS-II
distinct concern domains with respect to their relevant de-
mands, and estimate the Risk of Bias and Applicability for
each distinct point of interest. For all eight domains/points
of interest, an estimate of "Low"/"Unclear"/"High" is made,
while the eighth domain/point of interest is an overall decision
considering all seven of the previous concerns. In order to
finally classify a diagnostic study and measure its quality, the
authors use the strict "any high" rule to classify it, attempting
to result in useful optimization proposals for the relevant
research field: the annotated screening of the Healthy or AAA
advanced pathology imagery, and the detailed results are also
attached and presented in the Results and Appendix section.

IIl. STUDY STATISTICS

The articles in this article were published between 2015 and
February 2025, as detailed in Table I. The deliberate focus
on the past decade aligns with the objective of this review,
which is to present a comprehensive overview of the recent
progress in DL methods applied in medical imaging for the di-
agnosis and segmentation of AAA. Given the rapid advances
in artificial intelligence and image analysis techniques, pub-
lications prior to 2015 were excluded to ensure the review
included only new and state-of-the-art developments. Older
studies may not be applicable due to previous methodologies,
restricted computational capacities, or the absence of today’s
neural network architectures.

Through focusing on this 10-year time frame, the review
provides a structured synthesis of the most recent, relevant,
and influential studies as a reference for clinicians and re-
searchers who are keen on developing the use of DL in AAA
diagnosis. The selected publications represent two broad cat-
egories: peer-reviewed journal articles and conference pro-
ceedings, with a combined total of 67studies. Through this
carefully curated collection, the review recognizes recent
trends, methodology concerns, and novel opportunities to
apply DL to AAA detection and segmentation.

A. IMAGING TECHNIQUE

To better comprehend the landscape of data sources and
imaging modalities, this section provides a quantitative break-
down. Figure 2 indicates that CTA was the most common
modality used in 39 studies because of its superior vascu-
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TABLE I. Number of Publications per Year (2015-2025)

Year Number of Publications
2015 0
2016 1
2017 1
2018 3
2019 5
2020 4
2021 7
2022 16
2023 13
2024 15
2025 2
Total 67

lar detail and critical role in AAA diagnosis and operative
planning of AAA. Routine CT was the second most frequent,
used in 11 studies, demonstrating its application for structural
assessment. In other studies, multimodal imaging methods
were employed in other studies, including CTA & CT (n =
2), CTA & Ultrasound (n = 1), and a combination of CTA
with PET Scan (PET/CT, n = 1), reflecting efforts to combine
functional, soft tissue and vascular data. CECT was used
in 4 studies, while NCCT was reported in 1 study, some
studies using hybrid protocols such as NCCT & CTA (n =
3) and NCCT & CECT (n = 3) to acquire baseline as well as
enhanced anatomical data. In particular, phantom CTA was
reported in 1 study. These results demonstrate a staggering
dependence on high-resolution, contrast-enhanced structural
imaging, and more particularly CTA, in AAA-focused DL
studies, with modest but growing research on hybrid and
functional modalities.

It is important to note that both NCC and CECT fall
under the umbrella of CT imaging. NCCT is CT scanning
without contrast agent administration. It is particularly useful
in identifying calcifications, intramural hematoma, or when
contrast is contraindicated. CECT is intravenous delivery of
contrast media, which improves vascular architecture and soft
tissue delineation, crucial for the evaluation of aneurysm size,
wall integrity, and surrounding anatomy. Together, NCCT and
CECT provide complementary information that maximizes
diagnostic precision in AAA assessment.

While CTA remains a primary approach in AAA diagnosis
and surgical planning, a handful of studies have evaluated
MRI. The relatively small representation of MRI-based re-
search in the current literature reflects its higher cost, lower
availability, and longer acquisition time compared to CT.
Nevertheless, MRI provides multiple other relevant advan-
tages including tissue characterization and wall composition,
and may assess intraluminal thrombus (ILT) non-ionizing,
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along with wall stress, and vessel inflammation. MRI may
also be used in studies using computational fluid dynam-
ics (CFD) based studies to characterize patients’ hemody-
namic patterns and wall shear stress distributions, obtaining
biomechanical insights. The possible trajectory of MRI in
the AAA assessment—particularly biomechanical modeling,
CFD simulations, and risk of rupture—indicates its relevance
as an underrepresented representation of AAA imaging in DL
classification.

NCCT & CECTNCCT & CTA  phantom CTA
1%

4% 1% o

CECT

NCCT PET/CT
2% 2%

CTA&
cT

CTA
60%

FIGURE 2. Pie Chart separating imaging techniques used for each paper

Regarding access to the data sets used, Fig. 3 shows that
a significant majority of the data sets used in the reviewed
articles are private data sets, originating from collaborating
hospitals or health clinics (n = 58). Only a limited number of
publications leverages publicly available data (n = 5) and 4
studies use a combination of public and private datasets. This
deficit represents the ongoing challenge of data availability
and the need for additional open imaging databases to enable
reproducibility and greater research effort.

PRIVATE DATASETS 58

PUBLIC DATASETS

PUBLIC AND PRIVATE DATASETS
0 10 20 30 40 50 60

FIGURE 3. Distribution of private vs. public datasets in reviewed studies

The public datasets employed by the studies in this review
are mentioned in Table II. They, albeit modestly many in
number, contribute significantly to promoting transparency,
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reproducibility, and benchmarking in the field. The majority
of publicly released datasets have abdominal CT or CTA
images and vary in anatomical coverage, sample size, and
source sites. The release of these data sets has made the
segmentation and classification procedures of aortic anatomy
and pathology easier. The datasets containing AAA images
are the AVT dataset, the Synapse multiorgan dataset and data
from University Hospitals Leuven.

The approximate number of images or patient scans ranged
significantly across all publications reviewed. To ensure clar-
ity in reporting, the number of patients and the number of CT
slices or images are separately analyzed across all included
studies. Of the 29 articles in which the patient numbers were
explicitly given, the patient numbers ranged from 7 to 950,
with an average (mean) value of 186 patients and a median
value of 85. In terms of imaging volume, the transverse slice
sizes statistics in the included studies are given in Fig. 4. Out
of the total 67studies, 40 mentioned a slice size of 512 x 512
pixels, a standard commonly used in clinical CT for abdom-
inal examination. One study employed a higher resolution
of 1024 x 1024 pixels, implying a desire to maintain more
fine anatomical details, and one applied the size of 600 x
600 pixels, a non-conventional resolution. In addition, four
studies used 256 x 256 pixels, possibly due to computational
simplicity or due to limitations in obtaining original images.
The remaining studies utilized smaller areas of interest or did
not indicate the input image size utilized within their analysis.

1024 @1
600 1
512
256

NOT MENTIONED

FIGURE 4. Size of axial slices employed in studies

B. PREPROCESING TECHNIQUES

In addition to the selection of appropriate imaging modal-
ities, the reviewed studies used a variety of pre-processing
techniques to enhance image quality and model performance.
Some of them are utilized for data preparation, while others
are embodied in the data processing / DL pipeline as auto-
mated functions. Figure 5 presents a quantitative overview of
the pre-processing techniques used in the 67 reviewed studies.
Most studies have used a combination of techniques; these
figure highlights the main techniques employed.

Manual Segmentation is the most common preprocessing

technique used by 19 studies, highlighting its central impor-
tance in intensity value standardization in imaging datasets.
Studies in which CT images were annotated by experts was
the next most commonly applied step (8 studies), demonstrat-
ing the crucial dependence on expert annotations to supervise
the models. Several studies (8) reported proceeding with
no preprocessing beyond basic resampling or normalization,
demonstrating growing confidence in the ability of modern
DL architectures to generalize directly from raw medical
imaging data.

Several studies pointed to the utilization of additional
preprocessing techniques to improve the robustness of the
model. Data augmentation (3 studies) was used to synthet-
ically expand the size and diversity of the data set, mini-
mizing the chances of overfitting. Normalization (5 studies),
Region Of Interest (ROI) extraction (4 studies) was also a
frequent choice, with the aim of confining the input space to
the aneurysmal region and thus enhancing the convergence
and precision of the model. Techniques such as filtering and
extraction of morphological features were used in a smaller
subset of the work to reduce imaging artifacts and emphasize
relevant structural information.

More advanced preprocessing pipelines were also de-
scribed. Windowing techniques, patch extraction with feature
reshaping, and intensity normalization through Hounsfield
Unit (HU) interpolation were applied in guided methods to
enable improved visibility of vascular structures or compen-
sate for acquisition heterogeneity. However, their use was less
common than for more routine procedures such as segmenta-
tion and normalization.

In short, variability in preprocessing procedures mirrors
non-standardization in AAA imaging workflows. This kind
of variability would likely contribute, at least partially, to the
variance in model performance and generalizability across re-
search studies. Human segmentation and normalization were
always ranked among the most critical preprocessing proce-
dures in most of the selected studies, further highlighting their
indispensable role in preparing high-quality data for training
DL models.

Some of the most prevalent preprocessing steps were not
performed individually, but combined with other steps to op-
timize model training and performance. The following figures
show how widespread these combined strategies were in the
examined studies.

Figure 6 provides a summary of how manual segmentation
was supplemented by other preprocessing operations in all
studies. Although 42% of the articles relied exclusively on
manual segmentation, others employed techniques such as
ROI extraction, intensity rescaling, data augmentation, and
filtering. Each of these auxiliary operations is a step towards
improving dataset quality and model robustness to variability.
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TABLE II. Public Datasets Employed in This Field

Dataset Number of Articles

Studies

Modality Data Volume

AVT: Publicly available multicenter
aortic vessel tree database - Dongyang
Hospital
Abdomen data from the Multi-Atlas
Labelling Beyond the Cranial Vault
challenge - Synapse Multi-organ
dataset®

[27]

University Hospitals Leuven in

Belgium 2

[23] [24], [25] [26]

[30], [31]

CT scans 50 abdominal CT scans

, [28], [29] CTA 56 aortas with branches branches

CT 19 CT scans

#The AVT dataset was constructed based on full-body CTA scans, which were taken from the KiTSI9 Grand Challenge, the Rider Lung CT dataset, and cases
from Dongyang Hospital. All datasets were verified to be publicly accessible as of November 3, 2025.
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NORMALIZATION

ROI EXTRACTION
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WINDOWING TECHNIQUES
RECONSTRUCTION

MANUAL MEASURMENT

GROUND TRUTH LABELS + RESAMPLING + Z- SCORE NORMALIZATION
HU NORMALIZATION + INTERPOLATION

BRANCH BALANCE + DATA AUGMENTATION

CLASS BALANCING + AUGMENTATION

PATCH + RESHAPE

CORRECTION OF MISALIGNMENT AND DISTRIBUTION + NORMALIZATION

MORPHOLOGICAL FEATURE EXTRACTION

HU SAMPLING

FIGURE 5. Figure 5. Distribution of preprocessing and data preparation
techniques employed across the reviewed studies.

® Manual Segmantation

® Manual Segmantation ILT+ Mean Volume
Calculation

W Manual Segmantation + ROl Extraction

W Manual Segmantation + Data Augmention

m Manual Segmantation + Image Intesity
Rescaling

m Manual Segmantation + ROI Extraction +
Data Simulation + Lumen and Wall

Reconstruction
® Manual Segmantation + Filter

Manual Segmantation + JFCM Algorithm

® Manual Segmantation + Manual correction
of artifacts

FIGURE 6. Manual segmentation techniques and their combinations with
preprocessing steps.

Figure 7 illustrates the prevalence of annotation techniques
used in all investigated studies. The majority (75%) of the
data sets were annotated solely by experts, demonstrating
the importance of clinical judgment. A smaller proportion
entailed additional Region of Interest (ROI) extraction (12%)
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or mask creation (13%), reflecting greater but still limited
attempts at enhancing annotation accuracy and automation.

B Annotated by experts

M Annotated by experts + ROI
Extraction

Annotation + Masks

FIGURE 7. Distribution of annotation approaches across reviewed studies.

Figure 8 describes the usage of Region of Interest (ROI)
extraction across the studies examined. 50% of the studies ap-
plied ROI extraction and ground-truth annotation combined
with data augmentation, reflecting an integrated approach.
The remainder applied plain ROI extraction with augmenta-
tion (25%), or sophisticated workflows based on segmenta-
tion likelihood maps (25%).

B ROl Extraction + Ground
Truth Annotation + Data
Augmentation

B ROl Extraction + Data
Augmentation

ROI Extraction (AAA) +
Resizing + Segmentation by
Likelihood maps

FIGURE 8. ROI extraction methodologies and complementary
preprocessing steps.
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Finally, the breakdown of normalization-associated pre-
processing techniques is the same across all fields.
The study reflects an even distribution, with each tech-
nique—normalization in isolation, normalization paired with
resizing, labeling, or augmentation—accounting for 20%.

C. DEEP LEARNING TECHNIQUES

DL has become the cornerstone technique in the automation
of image analysis of AAA. Across the studies considered,
various DL models, primarily convolutional neural networks
(CNN), were used to perform segmentation, classification,
and prediction of disease progression. Current studies also
started including transformer-based models and hybrid ap-
proaches to improve performance and generalizability.

DL methods used in literature reviews have been utilized
for every stage of disease in AAA management. Most studies
focused on preoperative imaging, follow-up after surgery,
or both simultaneously. Having a good understanding of
where these focus are aimed is essential, since this will show
whether models are built for early detection, surgical plan-
ning, follow-up, or combined disease monitoring. Table III
provides an overview of the number of works per disease
stage simulated through DL methods. As seen, eight studies
have been focusing on modeling postoperative circumstances,
such as to estimate the disease progress, or to detect en-
doleak complications, while the vast majority (49 studies) are
strongly interested in preoperative treatment procedures such
as early and accurate diagnosis or surgical planning. Finally,
a number of studies (8 studies) use prior and post surgical
data in their studies, aiming to generalized AAA treatment
decision support.

TABLE lll. Disease stages modelled using DL

Disease stage Works
Preoperative 49
Postoperative 8
Both 10

In addition to disease staging, deep models have been
specifically designed to target certain anatomical and patho-
logical features of AAA. The most common semantic tar-
gets are the aneurysmal lumen, intraluminal thrombus (ILT),
and vascular calcifications. Segmentation and detection of
the structures are critical for accurate disease assessment,
risk stratification, and therapeutic planning. The semantics
defined for each model relies on the researchers’ consider-
ation to optimally model the task of interest (e.g. aneurysm
detection/segmentation), so respective variations on imaging
annotations can be observed. For example, different consid-
erations to the aortic wall modeling can be found, modeling it
separately or not, together with the aorta or thrombus classes
(as aneurysm).

In terms of modeling different aneurysmal semantics, 5
works were found to distinguish calcifications along the dif-
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ferent aorta and thrombus semantics. In one of them [32],
the aorta wall is distinctly considered from thrombus, while
the rest consider it as part of some other semantic. Within
the normal aorta concept, 25 works were found to explicitly
model Lumen (usually refers to the aorta without wall), while
complemented by an Intraluminal Thrombus class (with or
without aorta wall). A separate Intraluminal Thrombus class
was named in 25 works (with or without aorta wall). 2 works
were recorded to model a separate healthy wall class among
lumen and thrombus. Finally, 17 works were observed to
perform aorta segmentation tailored to the diseased cases,
including the aneurysm to aorta annotation. According to
the researchers’ considerations, other AAA-related semantics
that coexist near the diseased region were also seen in litera-
ture. They usually refer to other organ segments or anatomical
considerations, like aorta specific regions.

Table IV summarizes the anatomical and pathological fea-
tures ("semantics") most commonly modeled using DL tech-
niques in the literature. The lumen and intraluminal thrombus
(ILT) have each been addressed in 25 studies, highlighting
their significance in vascular imaging and disease assessment,
particularly in the context of aneurysms. The aorta, specifi-
cally in cases with aneurysmal dilation, has been modeled in
17 studies, reflecting growing interest in DL-based aneurysm
characterization. Calcifications have been simulated in 5
studies, while the aortic wall has been addressed to relatively
fewer studies, only showing in 2 studies.

TABLE IV. Semantics modelled using DL

Semantics Works
Lumen 25
Aortic Wall 2
Intraluminal Thrombus 25
Calcifications 5
Aorta (with aneurysm) 17

As seen in the literature, the whole range of DL tasks can be
employed to tackle aneurysm decision support. Classification
works usually consider the automated image labeling problem
for the presence of aneurysm in an image, and the preferred
taxonomy is binary (aneurysm / not aneurysm), as observed
in 9 relevant studies. In terms of the detection task, two works
were observed to focus on identifying a region of interest
that can be classified as aneurysmal[33], [34], versus the
background pixels, while some researchers focused on an-
notating postsurgical endoleak complications[35]. Likewise,
segmentation methods for specific Regions of Interest were
seen in 10 recorded studies, which often employ a detection
stage to discover a smaller region containing the semantics
of interest, followed by a segmentor to pixel-wise assign the
classes of interest.

Far more studies (40 works) were observed to perform
segmentation on the entire landscape, by sophisticated Deep
Learing architectures tailored to the specific requirements
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of AAA segmentation. In addition, a study was found to
perform predictive analysis to predict complications due to
AAA growth [36]. Finally, five works were seen to facilitate
data generation, trying to produce rarely found data types and
morphologies using more commonly found data.

TABLE V. DL tasks involved

Task Works
Classification
Detection
ROI Segmentation 10
Segmentation 40
Forecasting
Data generation 5

In terms of the major operators of the DL architectures,
this study discusses network designs that containing convolu-
tional and/or attentional blocks and the Transformer concept.
Attentional modules were found to be thoroughly discussed
in 8 works, while most of the works over the past decade
still strongly rely on convolutional-only modules (59 works).
Regarding the major architectures found,

TABLE VI. DL network modules

Modules Works
Convolutional 59
Attentional 8

D. PERFORMANCE

In terms of performance reporting and practical implementa-
tion considerations, two important dimensions emerged dur-
ing the synthesis of the included works: quantification and
computational cost. Only 18 of studies employed explicit
measures of quantification—i.e., aneurysm size, volume, or
thrombus burden—within their processing pipeline. This in-
dicates that while segmentation and classification are thor-
oughly investigated, quantitative analysis to aid clinical de-
cision support is weakly developed. Furthermore, 48 studies
reported no computational costs, such as memory require-
ment, processing time, or hardware configuration. The lack
of transparency in the computational resource demand is a
hurdle to reproducibility and limits realistic model scalability
and deployability estimation in clinical settings.

Moreover, the computational complexity of any data-
processing solution is bound to the input size and dimension-
ality, which leverages the computational costs with respect
to the desired computations’ individual cost, while in modern
medical decision support, the high-resolution data processing
is recently questionable. As of the input size observed in this
study, most systems (41 works) process 512 sized images (or
512 sided volumes), while only 2 were found to larger sizes
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(600 and 1024), and 4 studies employed 256 sided input.
Empirically, we could estimate that the cost efficiency of
likewise methods can always be tuned by reducing the input
size, for example, when employing ROI Segmentation instead
of whole volume segmentation, but this is also a function of
any complementary computations (such as the detection of
Region of Interest), so the exact impact on computational cost
is subject to the system design architecture and the specific
summary of all methods involved.

IV. RESULTS

This section summarizes key findings from the studies in-
cluded in this review, focusing on DL applications for the
diagnosis and segmentation of AAA. In the current section, an
overview of the imaging modalities used, the preprocessing
techniques applied, and the DL architectures implemented
is presented. Methodological trends, performance metrics,
and clinical relevance are also highlighted to assess current
capabilities and limitations, and regarding an overall quan-
tified insight of classification precision for the procedures
during the last decade, the authors consider the DSC metric
as resided by authors, and additionally calculate the DSC
whenever considered feasible.

A. PREPROCESSING AND DATA PREPARATION
TECHNIQUES

Data preprocessing and preparation are essential to ensure
data consistency, establish model robustness, and increase
learning efficiency when using DL in AAA diagnosis and
segmentation. One of the suggestions of the reviewer was
to create a single taxonomy of preprocessing methods that
were reported in the included studies. The details of this are
summarized in eight categories: (1) annotation, (2) intensity
normalization/windowing, (3) resampling, (4) ROI cropping,
(5) filtering/denoising, (6) data augmentation, (7) reconstruc-
tion/alignment, and (8) label synthesis.

1) Annotation

Manual segmentation was the most frequently used approach,
appearing in 19 studies. This approach involved expert radi-
ologists delineating critical structures such as the aneurysmal
lumen, intraluminal thrombus (ILT), and calcifications, which
were then used as ground truth for supervised model training.
Of these, seven studies implemented manual segmentation
as a standalone step to delineate key anatomical regions in-
cluding the lumen, wall, and thrombus [36], [26], [37], [38],
[35], [39]. Four studies combined manual segmentation with
extraction of the region of interest (ROI), allowing models
to focus on the relevant vascular areas while reducing the
computational load [40], [41], [42], [43].

Furthermore, two studies paired segmentation with data
augmentation techniques to expand dataset diversity and re-
duce the risk of overfitting. In one study [44], synthetic
data were generated using proprietary algorithms based on
surgeon-validated annotations. Augmentation was applied
dynamically during model training, with random checks to
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ensure annotation accuracy. In another work by Burrows et al.
[27], geometric transformations and nonlinear warping were
used to increase the dataset tenfold, with 3D space augmen-
tation incorporating random rotations (0°—15°), translations,
and scaling (0.7-1.3).

More complex pre-processing workflows were also re-
ported. For instance, Chung’s team [45] combined manual
segmentation, ROI extraction, simulated data, and lumen-
wall reconstruction to develop a high-fidelity training dataset.
Other studies applied segmentation with additional refine-
ment steps, including noise-reducing filters [46], the Joint
Fuzzy Clustering and Morphological (JFCM) algorithm for
boundary enhancement [47], and manual artifact correction
[31]. One study combined ILT segmentation with mean vol-
ume calculation to allow quantitative assessment of aneurysm
burden [48], while another included intensity rescaling to
normalize voxel values across patients [37]. Overall, these
diverse approaches underscore the centrality of manual seg-
mentation in AAA image analysis workflows.

In addition, nine studies adopted expert-driven image anno-
tation (some semi-automated), reflecting continued reliance
on domain expertise for high-quality ground-truth labeling.
In several cases, experienced professionals manually delin-
eated ground truth masks [32], [49]. Other studies used these
expert annotations to generate pixel-level masks or to extract
ROIs [50], [51]. However, the manual nature of these efforts
introduces variability and highlights the need for standardized
annotation protocols. Finally, manual measurements were
reported in one study for validation and feature extraction pur-
poses [52], while additional preprocessing strategies involved
handcrafted feature extraction (e.g., short neck, conical or
angulated neck, ILT presence, calcifications, and iliac artery
features) [53].

2) Intensity normalization / windowing

Building upon the segmentation-based preprocessing, several
studies emphasized intensity normalization and windowing
to address scanner variability and contrast inconsistencies.
Normalization of intensity values was applied in five studies
to reduce variation in scanner parameters and tissue contrast.
Lyu et al. [54] normalized voxel intensities to the range [—1,
1], while Roby et al. [55] scaled voxel values and resized
images from 512x512 to 256x256 pixels. Wang et al. [56]
combined normalization with a labeling step. Mavridis et
al. [23] used intensity clipping in the range [—275, 1900]
followed by normalization to [0, 1], along with data aug-
mentation (e.g., flipping, rotation, and intensity shifting) and
voxel resampling to [1.0, 1.0, 1.5]. HU-based scaling was also
reported to standardize CT intensities [57].

Complementary to normalization, window-based prepro-
cessing was reported in two studies. One used window split-
ting, labeling, and augmentation to improve model learning
in localized anatomical regions [58], while another applied a
HU window range of 200-500 to enhance vascular contrast,
combined with normalization, resizing, and enhancement to
improve model robustness [24]. Similarly, Zhang et al. [59]
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applied interpolation, HU cut-offs, mean variance normal-
ization, and z-score scaling to ensure intensity consistency,
while HU-based sampling was used in other studies to capture
representative contrast distributions [60].

3) Resampling

Spatial resampling was employed to standardize voxel dimen-
sions and align anatomical structures. One study used resam-
pling and z-score normalization to homogenize voxel inten-
sity distributions [61], while others used B-spline interpola-
tion to correct misalignments and improve geometric consis-
tency across scans [62]. These resampling approaches sup-
ported more uniform data representation, facilitating down-
stream model training and evaluation.

4) ROI Extraction

To further enhance localization and reduce computational
demands, ROI extraction was performed in three studies,
focusing on the aneurysmal segment. Two of these incor-
porated data augmentation. Kongrat et al. [63] extracted
fixed-size ROI feature maps, applied 3D Slicer for expert
annotation, and used augmentation methods such as flip-
ping and grayscale variation, followed by downsampling to
128 x 128 x 128 voxels. Li et al. [64] manually placed circular
ROIs in three aortic locations and assessed image quality
using SNR and CNR metrics. Another study resized cropped
ROIs to 256x256 pixels for 2D CNN input, reconstructing
probability maps as 3D likelihood maps [43].

Similarly, mask-based preprocessing was reported in four
studies. Two combined masks with ROI extraction to iso-
late aneurysmal zones [65], [66]. Salvi et al. [67] used bi-
nary masks with downsampling and B-spline interpolation to
match CT resolution, while another study applied the same
interpolation to align anatomical structures across modalities
[68].

Furthermore, two additional studies focused on resizing.
In one, DICOM CTA scans were converted to PNG format
and resized to 512x512 pixels, with thrombus ground truth
labeled in the axial plane by radiologists [69]. Another com-
bined resizing with patch extraction, class-wise division, and
denoising filters to normalize input size, improve feature lo-
calization, and reduce noise for enhanced model performance
[70]. Hong et al. [33] further transformed 4-class image
patches into feature vectors for model input.

5) Filtering and denoising

Noise suppression also formed an important preprocessing
component across several studies. Three works applied filter-
ing to reduce artifacts and enhance image clarity. A denoising
filter was applied before segmentation in one case [30], while
others used median filters [71] or Gaussian/median filters for
artifact suppression [72].

6) Data augmentation
Beyond filtering, several (three) studies emphasized data aug-
mentation as a strategy to mitigate limited data availability
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and improve model generalization. Lopez-Linares et al. [73]
used intensity-based transformations such as flipping, rota-
tion, and mirroring. In another study [74], ground truth an-
notations of aneurysm volume and diameter were combined
with augmentation strategies. Lopez-Linares’ separate work
[75] generated synthetic data from 3D B-spline deformation
fields and produced six training datasets by varying the ra-
tio of real and synthetic scans, with semi-automatic ground
truths manually refined. Another study addressed anatomical
asymmetry and class imbalance through branch balancing
combined with augmentation [25].

7) Reconstruction and alignment

Reconstruction-based preprocessing was used to enhance
anatomical accuracy and spatial fidelity. Epifanov et al. [76]
combined reconstruction algorithms with anatomical masks
to improve post-processing precision, whereas another study
integrated High-Intensity Reconstruction (HIR) algorithms to
enhance the visibility of fine arterial structures and suppress
noise [77]. These reconstruction strategies helped achieve
higher-quality input data for model development.

8) Label synthesis

Finally, a subset of eight studies adopted minimal prepro-
cessing pipelines, performing only basic formatting opera-
tions such as image conversion or resizing [78], [79], [29],
[80], [81], [82], [83], [84]. This streamlined approach un-
derscores the variability in preprocessing complexity across
AAA imaging studies and highlights that, despite the avail-
ability of advanced methods, some workflows continue to
rely on relatively simple data preparation steps. A few studies
performed minimal preprocessing or adopted synthetic label
generation strategies to compensate for the scarcity of anno-
tated data, underscoring the need for standardized labeling
frameworks in AAA imaging.

To ensure comparability across heterogeneous stud-
ies, we consolidated all preprocessing-related opera-
tions into a unified taxonomy including annotation, nor-
malization/windowing, resampling, ROI cropping, filter-
ing/denoising, augmentation, reconstruction/alignment, and
label synthesis. Figure 9 summarizes the distribution of
these techniques across different DL tasks, highlighting that
segmentation studies consistently relied on annotation and
ROI-based cropping, while augmentation and normalization
were less frequently applied.
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FIGURE 9. Distribution of preprocessing techniques across DL tasks in
AAA imaging studies (n = 68). Stacked bars represent the proportion of
studies applying each technique by task type.

B. CLASSIFICATION

Within the queried applications, 8 DL classification works
have been located since 2019, which architecture was entirely
built using convolutional blocks only. A detailed record of the
authors’ observations on these methods is found in Table VII.
Most of them are designed to process visual images with 512
pixel sides, which are inducted from the collected reflections
of the computed tomography scanner, transferred to the RGB
field, as an expert physician can visually observe [40], [56],
[49], [70], [80]. One study was found to include prior and
postoperative data[80], while all works focus on the evolution
of the disease before surgery and repair. Most methods are
trained on CTA data [40], [49], [70], [80], [59], [72], which is
considered a "Gold Standard" for AAA screening, while one
work declares the likewise CECT technique [85], which is an
"umbrella" term of CTA. Moreover, one work [70] declares
the CT technique together with CTA, while one model [56] is
built on NCCT data.

Almost all methods [40], [56], [49], [80], [59], [72],
[85], are trained in the binary classification question wether
this region/image is aneurysmal or not, and rely on classic
DL architecture design (ResNet[86], VGG[87], AlexNet[88],
DenseNet[89], EfficientNet[90]), using a selected (VGG-16)
or test a range of proposed flavors (eg ResNet-50, ResNet-
152). In contrast, in [70], the Aorta region is spotted among
several anatomical structures using a novel image encoder,
and an image processing algorithm tries to delineate the exact
morphology of the predicted region and estimate the severity
of the disease.

The classification methods found can be distinguished as
2D and 3D methods. The former techniques are capable
to operate on a single axial view, while the latter operate
on the entire volume, or a 3-dimensional region of interest.
Image classification, namely methods that operate in two-
dimensional plane, are used in [40], [49], [72], [80], [56],
usually operating for a specific, or each separate view slice of
3D Volume to make predictions. Recently, some researchers
[56], [72], [80] claim an accuracy greater than 99% and
between 91% - 99% for the task of recognizing what image
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TABLE VII. Classification techniques

Literature Modality Semantics Dimensions Method Highlights
ROI Voxel 3D Convolutional Feature Extract with
Zhang et al. [59] AAA machine learning on preoperative data
* S04 CTA Not AAA 3D ResNet-200 AUC: 85.2% (DL Model test set), AUC: 92.7%
(diagnostic pipeline accuracy)
. Image Classification on preoperative data
Rajmohap e al. 1721 CTA Ar A 2D EfficientNetB7 Acousacy: 92%. Precision, 91%, Recall: 90%.
© DSC: 90.49%
Image Classification on preoperative &
. postoperative data. Transfer Learning on
Wang 65823[40] CTA NAO,[A: AA 2D Trar]lzs:salr\éfgr(;lmg ImageNet pretrsaj“nIé SCAM visualization to indicate
AUC: 81%, Accuracy: 82%, DSC: 87%
Image Classification on preoperative &
postoperative axial data. Transfer Learning on
Tomihama et al. [80] AAA Transfer Learning ImageNet pretrain. CAM visualization to indicate
2023 CTA Not AAA 2D VGG-16 aneurysm region. .
AUC: 99.98%, Accuracy: 99.6%, Sensitivity:
98.7%, Specificity: 99.7%, DSC: 99.8%
(calculated on Confusion Matrix)
Transfer Learning Image Classification on preoperative axial data.
ResNet-50 Transfer Learning on ImageNet pretrain. CAM
Miao et al. [56] NCCT AAA D ResNet-152 visualization to indicate aneurysm region.
2022 Not AAA DenseNet-121 Best model: DenseNet-121, ROC-AUC: 99.7%,
DenseNet-201 Accuracy: 99.6%, Recall: 99.8%, Precision: 97%,
EfficientNet-BO DSC: 98.2%
Image Classification on preoperative axial data.
Transfer Learning on ImageNet pretrain. CAM
Camara et al. [49] CTA AAA D Transfer Learning visualization to indicate aneurysm region.
2022 Not AAA VGG-16 AUC: 99%, Accuracy: 99.1%, Sensitivity: 98.9%,
Specificity: 99.3%, DSC: 99.08% (calculated on
Confusion Matrix)
3D Voxel classification on preoperative visual
AlexNet data. Layer-wise relevance propagation to create
Golla 65312' 1[85 I CECT N’tf: AA 3D 3D VGG-16 relevance maps.
3D ResNet Best model: 3D ResNet, AUC: 97.1%, Accuracy:
95.3%, DSC: 89.4%
Novel CNN Encoder design. Hough Circles
Abdominal algorithm to define exact aorta borders and
Inside measure its diameter. Diameter is converted to
Mohammadi et al. [70] CT Region, mm and AAA risk ishestimated wi_th respect to
2019 CTA Aorta, 2D Novel Encoder size as no risk, mgdlum risk or high risk.
Body Aorta Detection Accuracy: 98.62%
Borders, (classification), 98.33% (Hough Circles),
Backbones Precision: 97.94%, Sensitivity: 97.93%, DSC:

97.93% (calculated on metrices)

shows an aneurysmal condition, prior to surgery (preoperative
data). Transfer weight learning from the common objects’
model (ImageNet[91] pre-train) is employed in most works
(4 out of 5) to initialize training. Typically, the findings of
the researchers are visually resided using Class Activation
Maps (CAM) on a high abstract layer to indicate the presence
of an aneurysm. In terms of architectures used, all methods
found rely on ’classic’ DL classification architectures, while
their success indicates that their usage remains sound and not
obsolete.

To work for three dimensions, the problem remains to
discover whether an entire 3D volume or a 3D region of
interest contains an AAA. However, Mohammadi et al.[70]
have tried to use DL to distinguish relevant organ regions,
proposing a novel CNN to the specific disease recognition
task, while using image processing to delineate and measure
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the abdominal aorta and estimate the severity of the disease.
Zhang et al. [59], tried to exploit the ability of DL to extract
valuable information from raw data, to assess the higher level
representation of a 3D CTA volume, to use as a module in a
broader decision support system on disease progression, so
a classification model is trained, but it is the intermediate
representations that are given to the decision support logic and
further fused with other information. In [85], a 3D ResNet
was trained to perform classification, and then intermediate
layer-wise information is reused to create relevance maps
that can visualize the presence indicators of the aneurysm.
An experimental comparison was made among other known
architectures (AlexNet, VGG-16).
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TABLE VIIl. Detection techniques

Literature Modality  Semantics Dimensions

Method Highlights

Koger et al [34]

2024 CT AAA 2D

AAA detection on preoperative CT visual images of
transverse axial view using Yolov5. ~80% peak sensitivity
and ~60% peak precision on validation across epoch training
to indicate potential applicability of YOLOvS on AAA
localization using 1024 pixel sided images.

YOLO

Hahn et al [35]

2019 CTA AAA 2D

Transfer Learning
RetinaNet

Endoleak Detection: RetinaNet AAA ROI localization with
ResNet-50 pretrain. Post-processing to remove outliers:
removing isolated predictions if too far from a series of
predictions. ResNet-50 binary classification to decide if

Endoleak is present.
Detection Accuracy: 98.7%, Endoleak AUC, Accuracy: 94%,
89%

Hong and Sheikh [33]

2016 CT AAA 2D

Deep Belief

AAA region detection followed by Bayesian level set
algorithm to delineate (segment) Lumen, Thrombus and
Calcifications.
Detection error rate of 10 and 20% obtained by different
configurations for detecting small and large aneurysms.

Network

C. DETECTION

The AAA Detection task, usually means to extract the exact
rectangular boundary in which an AAA resides. The relevant
methods operate on the entire image and try to eliminate
the region of interest to a much smaller space. The relevant
publications are summarized in Table VIII. All three works
examined rely on convolutional modules only. Recently, a
YOLOV5-based study was published [34] that claims the po-
tential of the YOLO architecture for AAA detection for higher
resolution images (1024p), which can be further examined in
practice for this task.

Earlier approaches [35], [33] have tried to localize the
AAA ROI, claiming an accuracy above 90% on test data. In
[35] a RetinaNet is trained to determine the disease bound-
aries. A few postprocessing steps in pipeline include the HU
intensity values’ clipping within a predefined intensity range
and outlier removal for bbox predictions that are considered
isolated. Consequently, a ResNet-50 is trained on the ROI
pixel to determine if this aneurysm contains an endoleak or
not. The authors claim an 98.7% A AA detection accuracy and
an 94% AUC for endoleak detection.

Deep Belief Networks are employed in [33], where a
Bayesian level set algorithm delineates any entities of in-
terest (Lumen, Thrombus, Calcifications) as post-processing.
The DL network performs the ROI localization task, and
the authors claim an error rate of 10% for the best network
configuration.

D. SEGMENTATION ON REGION OF INTEREST

These works typically present a cascade of autonomous de-
tection and segmentation operations. The detection method
is capable of localizing a smaller region of interest out of
the entire image, while the segmentation procedure provides
pixel-wise annotation on the specified region. The relevant
publications are shown in Table IX. The different approaches
with respect to the semantic of interest, model an aorta region
(which may contain aneurysm) [29], the distinct Lumen &
ILT entities [37], [52], [63], [77], maybe complemented with
aclass of aorta walls, or the AAA pixel mask (thrombosis and
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wall, without lumen)[39], [94].

CECT (typically CTA) is the modality preferred in this
task, too, because of its ability to better highlight the region
of the aorta. However, some promising results have yet been
published [93], to indicate the possible usability of NCCT that
claims precision equal to that of CTA, using U-Net architec-
tures with attention modules in combination for multiclass
segmentation of the abdominal aorta. Such results can be
further examined with respect to the scope of research for
intravenous contrast-free scanning ability.

The methods presented make extensive use of U-Net struc-
tured networks, with convolutional and/or attentional mod-
ules to the detection and segmentation stages. All report
descent success metrics (commonly DSC evaluated), above
80%, or many of them above 90%. The highest reported DSC
was found as a result of the ROI segmentation of 3D U-Net in
[63] to delineate Lumen and ILT in the CTA subregions that
were manually defined. In [29], a regression method is used
for localization, while the U-Net segments the region of in-
terest. Segmentation is performed to delineate the aorta, with
respect to the aorta section found, followed by conventional
image processing methods to pixel-wise extract the Lumen
and ILT pixels and provide morphological measurements.

In [52], [93], [37], [57], a likewise schema is also used
to detect and consequently segment Lumen and ILT, using
an attention mechanism to the segment stage, while in [32]
it is used in the detection phase. The semantics discovered
are primarily the Lumen and ILT, while [93], [32] include
the Aorta Wall and [32] the Calcification entities in the DL
pipeline. An ensemble segmentation approach is also located
in [39], in combination with VBNet and majority voting. In
post-processing, Centerline extraction, connected component
analysis, Skeletonization, and morphological measurements
(maximum diameter for aorta/lumen/ILT) are provided. Im-
age filtering was also observed to provide noise-free slices in
[57].

ResNet-based procedures are observed in [39], [32] for
the segmentation and detection task, respectively. The for-
mer employs a sliding-window method and subsequently
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TABLE IX. Segmentation on Region of Interest

Literature Modality Semantics Detect Method Segment Method Highlights
2D Attention U-Net trained on pseudo-labels of preoperative
Ma et al. [92] data, derived as regularized original annotations using ellipse
2'024 NCCT Aorta None Attention U-Net fit. Network is trained selecting a 256x256 region of Interest.
Attention modules are placed in the decoder.
DSC: 85.7%, Sensitivity: 88.7%
Aorta
As . NN Regression for bbox localization and U-Net segmentation
scending aorta ative & postonerative data. Refi ¢ with fi
Postiglione et al. [74] TA Aortic arch, NN R . on preoperative & postopera 1\115 ‘;a‘l N }r]l:.m;,n 1w1 uzzy
2004 C Descending aorta egression Unet region competition, minimal path algorithm for lumen &
Suprarenal thrombus, diameter measurer}nent, volume measurement.
Infrarenal Right DSC: 94%
iliac Left iliac
ROI identification with U-Net. Each single axial view U-Net
segmentation. 3D integration using simple averaging.
Spinella et al. [52] Lumen Centerline Extraction, Z-axis conne.cted components analysis,
2023 CTA ILT U-net U-net (Attention) Skeletonization algorithm, Maximum Aorta Diameter
calculation.
Accuracy: 97%, Sensitivity: 98%, Specificity: 96%
Segmentation DSC: 91% (ready-made pretrained segmentor)
Three trained networks for AAA segmentation on
preoperative data: 1. ROI identification and segmentation, 2.
Wall Lumen extraction and ILT identification. 3. Calcified ROI
Abdolmanafi et al. [32] CT lumen Transfer learning Resnet-18-based Classification, 4. Landmark Detection (aorta anatomical
2023 CTA ILT Resnet-18-based i i segments). Segmentation mean IOU: 97.5% (test set),90%
Calcifications (external test set)/. DSC: 98.73%, 94.73% (calculated on IOU
for test and external test set), Classification Accuracy,
Sensitivity, Specificity: 81% - 91%
1. Aortic ROI Detection (Unets A & D for NCCT and CTA) 2.
Wall Aortic Segmentation on ROI (Unets B,C for lumen/wall
Chandrashekar et al. [93] NCCT L A . . . . segmentation on thoracic/abdominal ROI) and 3. Abdomninal
umen ttention U-net Attention U-net .
2023 CTA ILT aorta segmentation on NCCT.
DSC: 95% (CTA, Thoracic), 93.7% (CTA, Abdominal),
93.5% (NCCT, Abdominal)
AAA segmentation on preoperative data: 1. Aortic centroid
Bruti et al. [37] Lumen idemif}calion, 2. ‘ROI cuboid crop,‘fﬁ Segmentation, 4.
. CTA U-net 3D U-net Centerline extraction, 5. Mean maximum total aneurysm
2022 ILT . - . 4
diameter calculation, 6. Mean lumen diameter calculation.
DSC: 89%
3D U-Net, doubled values of the channels before each max
Kongrat et al. [63] Lumen ooling to segment preoperative data. Region of interest
¢ 2022 CTA ILT None 3D U-Net ’ (128gx128xg1 28 vo};el)rzvas manually cr(g)pped
DSC: 98.68%
AAA segmentation on preoperative and postoperative data:
Novel detect CNN to detect ROI bbox and VNet to segment
AAA. Segmentation Refinement: fuzzy region competition,
Adam et al. [77] CTA Lumen Novel Detect CNN VNet centerli%le extraction: minimal path a}{goﬁthm, Dizll)meter
2021 ILT X . .
measurement: max diameter as the maximum of slices. DSC:
84% (healthy), 95% (diseased), and 93% (diseased aortas after
endovascular treatment)
AAA segmentation on postoperative data. ResNet-50 bbox
L localization with overlapped sliding window. Ensemble of 3D
Dziubich et al. [39] CTA AAA ResNet-50 Unet, VBNet U-Net and VBNet96 with méﬁorily voting to AAA
2020 ensemble .
segmentation.
DSC: 94%
128x128 Bbox localization using U-Net. 3D cuboid and
Fantazzini et al. [57] multi-view aggregation by concatenating the 2D probability
2020 CTA Aorta U-net U-Net maps and applying a Gaussian filter along the z-direction
DSC: ~93%, Average surface distance: ~80%
ILT detection on postoperative data. Detectnet to localize the
. . o Region of Interest. ROI segmentation using modified HED
Lépez-Linares etal. [94] CTA ILT (with wall) DetectNet modified HED network: novel network architecture that detects edges but

2018

X : .
networ preserves the shape and appearance information of the

thrombus. DSC: 82%.

segments the ROI. In post-processing, an identification of
the landmarks for the aorta regions follows the segmentation
method, scoring 94% DSC in overall. The latter performs Au-
toencoder segmentation by training separate networks for the
Region of interest and the Lumen/Thrombus segmentation,
and consequently performs wall classification as calcified or
not, scoring 97%-99% BF-score for segmentation and 81%-
91% for metrics in calcification recognition.

E. VOLUME SEGMENTATION METHODS FOR ENLARGED
AORTA
These techniques, which are summarized in Table X, model
AAA detection as aorta deformations and compute all pixels
of the aorta, including Intraluminal Thrombus regions. Most
of the data used in these studies come from contrast-enhanced
computed tomography scans [11], [26], [84], [24], [46], [47],
[31], [67], while the focus is on the segment of the aorta organ.
The variants of the U-Net schema for two- or three-
dimensional processing are commonly found in most stud-
ies [95], [28], [26], [30], [24], [46], [31], [38], [67]. Some
researchers propose slice-by-slice segmentation (2 dimen-
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TABLE X. Volume Segmentation methods for Enlarged Aorta

Literature Modality S tics Di Method Highlights
2D Encoder-decoder architecture with attentional modules. Feature
Wan et al. [50] extraction by image processing and feature fusion. Segmentation on
' CT Aorta 2D Encoder-decoder preoperative and postoperative data. Precision: 97.32% (all data),

2024

Sensitivity: 90.01%(preoperative), 86.2%(postoperative), DSC:
93.29%(preoperative) , 91.01% (postoperative)

Ascending aorta

3D U-Net segmentation on preoperative data. Image processing operations

van Praagh et al. [95] PET/CT Aortic arch 3D U-Net for Calcium calculation, Radiomics Feature Extraction, 2D Visualization,
2024 Descending aorta Background Measurements.
Abdominal aorta DSC: 88.5% (internal test set), 86.7% (external test set)
Previously published modified 3D U-Net for aorta segmentation on
preoperative data. 2D images extracted from 3D prediction to perform
Chatterjee et al. [28] cT Aorta 3D U-Net ellipse fitting for maximal diameter calculation. Automated calcified
2024 atherosclerotic plaque detection.
Sensitivity 96% (95% CI 89%, 100%), Specificity: 96% (96%, 97%),
AUC: 99% (98%, 99%), DSC: 94%
YOLOV9 and v8 models trained on CT visual images of preoperative CTA
Smyris et al. [51] data. Multi-versions’ and flavors’ model comparison on preliminary test
200 4 CTA Aorta 2D YOLO data for precision and resource efficiency.
Best model (v9-C) Sensitivity: 100%, Precision: 98.97%, mAP50-95:
76.15% , DSC: 99.48%
Two 3D U-Nets in cascade. Initial segmentation result by the 1st U-Net
(low resolution) guides the 2nd U-Net (full resolution). Frequency-domain
Muetal. [26] CTA Vasculature 3D Cascade U-Net channel attention module using the Fourier Transform, together with
2023 based . . S
spatial attention. 3D model visualization.
Sensitivity: 95.68% Specificity: 99.97%, DSC: 89.9%
U-Net image segmentation trained on preoperative data. Postprocessing
Saleem Javeed et al. [30] using morphological approaches with region growth (Erosion and
2023 cT Aorta D U-Net dilatatigon torl?ill h(ﬁes angl;:"emove artifacls§ andgnetwork finetuning.
Sensitivity: 89% Specificity: 97%, DSC: 81%
Zhang et al. [84] Encoder- Encodgr—DeCOder architecture tra?ned on preoperative datAa. 2D FeatuAre
202'3 CTA Aorta 3D Decoder extraction and an LSTM module in encoder and an attention module in
LSTM decoder. DSC: 91%
Polar transform for annotated elements and centroid extraction. Data
Bendevic et al. [24] augmentation us%ng centroid jitter. Modified 2D UjNet trained on polar
2022 : CTA Aorta 2D U-Net based data. Sum of predictions converted to normal coordinates and thresholded
by confidence of being aorta.
Sensitivity: 97.3%, Precision: 91.5%, DSC: 93.2%
Ensemble based Image processing to image denoising and DL training on preoperative
Dziubich et al. [46] CECT Aorta D on U-Net, data. Whole volume CT segmentations construct a 3d surface, while
2021 ResNet, and smoothed with an image and surface filter. Centerline extraction.
VBNet DSC: 91%
CNN trained on preoperative data for segmentation and denoising. JFCM
Zheng et al. [47] CTA Aorta D Novel CNN algorithm was used to filter fealure§ adaptive median filter for denoising,
2021 and a novel cnn architecture.
Accuracy: 92.86 - 94.9%, Sensitivity: 95.45 - 97.73%, Specificity: 70%
Salvi et al. [67] Moditied U-Net using LeakyRELU activations trained on preoperative
ZOél CTA Aorta 3D U-Net based data. Finetuning by retraining on additional data.
DSC: 75% (Lumen)
Habijan et al. [31] . Modified 3D U-Net using deconvolution at decoder, trained on
: 2020 CTA Aorta 3D U-Net based preoperatigve data. DSC: 91.03%
3D U-Net trained on preoperative data. Skeleton Graph Construction
CT considering adjacency rules. CT and fluoroscopic skeletons’ matching
Zheng et al. [38] hantom Aorta 3D U-Net algorithm to infer skeleton deformations.
2019 p CT 2D distance error (pixel): 0.12 on patient data, 0.11 and 0.08 on phantom

and simulated data. 3D distance error: 2mm on phantom data, 1.13mm on
simulated data

sions). In [46], an ensemble containing ResNet and VBNet
is also proposed, while the 3D visual model includes image
smoothing, a surface filter, and centerline extraction.

A novel U-Net variant based on the polar coordinate trans-
formation was also seen in [24], while finally the polar-
coordinated predictions are thresholded before being trans-
formed back to normal coordinates. In terms of 3D process-
ing, a cascade variant of U-Net is shown in [26], which aims to
delineate the whole vascular system. Further architectural in-
novations are resided using the Fourier transform and tailored
attention modules, claiming an about 90% DSC score, while
a 3D visualization is embedded. In post-processing following
the U-Nets, calcium calculation by image processing [50],
[95], ellipse fitting for maximal diameter calculation, ra-

VOLUME XX, 2025

diomics feature extraction, erosion & dilatation, and skeleton
extraction.

Another approach is built on the YOLOv9 [51] architecture
for image segmentation, while other researchers have tried to
synthesize a novel CNN [47] with feature median filtering
to model aorta organ annotation on CTA. A novel approach
has been further proposed in [84], where an encoder-decoder
module is complemented by an LSTM to integrate the third
dimension insight.

F. SINGLE CLASS SEGMENTATION FOR AAA-RELATED
ENTITIES

Some works, which are shown in Table XI, focus on one spe-
cific semantic that is related to the AAA disease, presenting
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TABLE XI. Single-class segmentation approaches on AAA-related semantics

Literature Modality S tics Di Method Highlights
U-Nets trained for single-view segmentation of preoperative data. A fourth
Lywet ;})2[51; 1 CTA AAA Wall 3D 2% UneIt\I " U-Net is trained to pgrform multgi-view integragon Esing all three views.
00mINe Sensitivity: 92%, DSC: 88%
Hwang et al. [69] Thrombus segmema}ipn on postoperative dgta} vi‘sual‘images using
202 CTA AAA wall 2D Mask-RCNN Mask-RCNN. A modified focal loss for classification is employed.
DSC: 82.67%
U-Net based CNN for thrombus segmentation on postoperative data.
Salvi et al. [61] . Encoding CNN blocks, upsampling decoding and the parametric rectified
2022 CTA AAA Wall 3D U-Net based linear unit (PReLU). Training on 128x128x128 region of interest.
DSC: 42% (asymptomatic cases), 32% (symptomatic cases)
Data enhancement embedding coordinate information. DL networks
Siriapisith et al. [81] NCCT AAA region 3D Transfer Learning trained for preoperative and postoperative data. Transfer Learning for
2022 CECT AG-DSV-UNet postoperative data training.

Best model (AG-DSV-UNet) DSC: 97.13%(NCCT), 96.74% (CECT)

novel modeling methods to its precise delineation. In [81], the
authors extract AAA as a distinct entity that includes the aorta
or other semantics found within the aneurysm boundary. The
study also includes data enhancement by combining CT data
with the respective coordinate information to increase per-
formance. U-Net-based models in [81], [61] are used for the
preoperative and postoperative AAA thrombus 3d segment in
CTA volumes, experiments indicating descent performance
(DSC: 82.67%, 88%) to handle preoperative examples.

In [69], Mask-RCNN image segmentation presents like-
wise ability to perform the same task in two dimensions. With
the addition of a novel focal loss function for classification,
the authors claim an DSC 82%, for AAA wall segmentation
for CTA slices / images.

Siriapisith et al. [§1] makes use of both NCCT and CECT
preoperative data to train various models, fused with coordi-
nate information. The authors claim 97.13% and 96.74%, re-
spectively, by AG-DSV-UNet, and further use transfer learn-
ing to model postoperative data, scoring 94.90% and 95.66%,
respectively.

G. MULTICLASS VOLUME SEGMENTATION METHODS FOR
INTRALUMINAL THROMBOSIS
Regarding the multiclass segmentation approach, Table XII
contains DL methods that are able to annotate more than
two semantic classes and segment the entire CT volume to
distinguish AAA and the aorta. The semantics of interest are
commonly the Lumen and the ILT, but also the Calcifications
[78], [76], Stent [27], Spine [71], or other organ structures
[79]. The ILT class may also be seen as the thrombus, or
some delineation of the entire aorta wall that includes any
thrombotic mass [55], [45]. The volume modalities declared
are NCCT[65], CECT[27], CT[78], [76] and CTA[55], [79],
[23], [96], [97], [41], [44], [53], [45], [42], [71]. In post-
processing, various volume measurement methods are em-
ployed to complement the decision support. Some of them
are the diameter of the aortic neck, the diameter of the aortic
region, the angulation of the aortic region [78], the length of
the segmentation, the surface, the radius, the torsity [66], and
3D visualization.

Ma et al. [65] presented an autoencoder approach that in-
cludes a feature fusion logic, reporting a DSC 88.7% in preop-
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erative CTA data. Jung et al.[41] proposed Mask-RCNN im-
age segmentation followed by a Bi-CLSTM to model three-
dimensional volume information, reporting 87.3% DSC. In
[27], a Variational Autoencoder is trained for postoperative
CECT data using their edge detection transformation, reach-
ing 90.9% DSC for ILT and 93.7% for the semantics of
Lumen and Stent. In [40], a DeepLabv3+ architecture is
employed with a ResNet-50 pre-train (Transfer Learning) to
distinguish ILT and Lumen, reaching a BF score of 98.29%
assessed with a train / test setup.

Other approaches, mainly operating on CT and CTA, em-
ploy some U-Net schema for segmentation. Recently, Roby
et al. [55] reported a DSC of 95.62% and 96.5% for the
classification of Lumen and outer wall pixel. Other U-Net
variants seen, like the U-Net ensemble [78], Cascade U-Net
[97], nnU-Net[96] and U-Net based novel approaches [79],
[23], [76], [44], [45], [71] reported a minimum 83.12% DSC
success in testing.

H. DATA GENERATION

The data generation task includes the ability to create syn-
thetic data for modalities that are not commonly found to
feed neural network training. Typically, Generic Adversarial
Network algorithms are found to perform some image to
image translation and provide some approximation of how
would it be if a given image was transformed to another
target imaging technique. For training, a generator is trained
to perform the translation task, while a discriminator is to
measure the result success.

In [60], [54] an NCCT to CTA method is employed, while
in [62] the target modality is CECT to generate contrast
enhanced imagery out of non-contrast CTs. In [29], an in-
termediate representation based on Ultrasound and CT is
produced to tackle the lack of annotated Ultrasound datasets.
The CT annotations are encoded and mapped to simulated
Ultrasound images. The features inducted by the model are
used to model real Ultrasound aorta segmentation. Finally,
in [64], a CTA reconstruction method is used to produce
synthetic CTA and enhance the low-dose CT predictions,
providing more separable data.
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TABLE XII. Multiclass Volume Segmentation methods for Aorta and thrombus

Literature Modality S tics Method Highlights
2D U-Net trained on preoperative data and images sized to 256x256. User
Roby et al. [55] CTA Lumen D U-Net interactive NURBS-Based tool including segmentation refinement and
2025 Outer Wall enhance. 3D model reconstruction using segmentation masks. DSC:
95.62% (Lumen), 96.58% (Outer Wall), 96.1% (mean calculated)
Lumen
Zhang et al. [79] li“e f;liﬁégwht 2D UfNetA based architecture on Preoperali@ data. Novel feature fusif)n
202'5 CTA Sup. Mesentori 2D U-Net based and extraction method. Self attention mechanism, Convolution, Attention,
p. Mesenteric . . .
Artery upsampling decoding. DSC: 87.6%
Aneurysm
S ; 3D U-Net trained on preoperative data. Marching cubes algorithm to
Mdvndlzztzjl. 23 CTA :orta 3D U-Net generate the reconstructed surface geometries, as a 3D surface model.
neurysm DSC: 89%, Sensitivity: 90%
2D-3D U-Net ensemble on preoperative data. Landmark extraction for
) Aorta aulomatec! measurgmen}; on 3D mOfiel: aortic ngc}( diameter,Aaortic
Kim et al. [78] cT Thrombus 2D-3D U-Net ensemble aneurysm diameter,right 1112}9 artery dlameter,'left 111ap artery dlamet'er,
2024 Calcifications aortic neck length, common iliac artery tortuosity, aortic neck angulation
i DSC: 92.8% (Aorta), 78.2% (Thrombus), 70.2% (Calcifications), 80.4%
(calculated average)
3D nnU-Net iterative training on preoperative and postoperative data.
Ginzburg et al. [96] Aorta Anatomic lar}dmarks placed for aorta sectioning. Density-based threshold
2024 CTA Ancurysm 3D nnU-Net for adipose tissue. PVAT analysis: Fat around aorta / aneurysm measured
by HU attenuation at selected distances around aorta / aneurysm. DSC:
97.2 (test set), 97.7% (external test set)
Eoit L 1761 Lumen 3]?4U-Nez1 trair[;ed in preoperative déita. ResNet—S?lencpdez Eg? and
pifanov et al. upsampling to decoder. Largest connected component filtration an
2024 cr g hrgrpbu$ . 3D U-Net based filling holes filtration (FHF). Spatial and intensity data augmentation.
alcifications .
DSC: 83.12%
M 2D Feature extracted and fused, Convolutional and CNN decoding
aetal. [65] Lumen
2023 NCCT Thrombus 3D Autoencoder modules.
DSC: 88.7%
3D U-Nets in cascade on preoperative data. Subsampled CTA images for
long-range dependencies and feature fusion and mixed pyramid pooling in
Mu et al. [66] Lumen the second U-Net. Overlapping 3D patches and majority class selection.
2023 CTA Thrombus 3D Cascade U-Net Length, Surface, Valume,li\l/olaxg Radil:l,ls, Mean Radiljls, L%/ndulation Index,
Tortuosity automated measurements
DSC: 94.5% (Lumen) and 80.4% (ILT)
Mask-RCNN and Istm training on postoperative data. Mask-RCNN
Jung et al. [41] CTA Lumen oD Bi-CLSTM provides initial image segmentation, and Bi-LSTM is then trained on
2023 Thrombus Mask-RCNN segmented images to learn 3D relations.
DSC: 87.3%
Caradu et al. [44] Lumen U-Net trained on preoperative and postoperative data.
2022 CTA Thrombus 2D U-Net DSC: 95% Sensitivity: 92.9%
Burrows et al. [27] Lumen Encoder-decoder VAE mf)c!e} trained on Rostoperative data. Enhanced edge detection as
2022 CECT Thrombus 2D VAE initial segmentation and an Encoder-Decoder.
Stent DSC: 90.9% (Thrombus), 93.7% (Stent & Lumen)
DeepLabv3+ segmentation on preoperative and postoperative data.
Transfer Learning Morphological feature induction. Radiomic Feature extraction and
Wang et al. [53] CTA Lumen oD DeepLabv3+ with machine learning to predict severe adverse events (SAE / No SAEq)
2022 Thrombus ResNet-50 ResNet-50 feature extraction.
backbone Mean 10U 90.78% (test set), DSC: 95.16% (calculated on IOU) Accuracy:
85%, F1-score: 89%
Aneurysm wall and Lumen segmentation on preoperative data using
Chung et al. [45] Lumen U-Net. Point c]ouq and surface mesh conslr'uct'ion. Morphological feature
202'2 CTA Ancurysm Wall 2D U-Net extraction on 3D and stress prediction. o
Accuracy: 98% accuracy, Precision: 97.2%, Sensitivity: 96.0%, DSC:
96.59% (calculated on sensitivity,precision)
Transfer Learning Aneurysm wall and Lumen segmentation on preoperative data using
Wang et al. [42] CTA Lumen oD DeépLabV3+ DeepLabv3+ with a ResNet-50 pretrain to extract features.
2022 Thrombus ResNet-50 Accuracy: 99.88%, mean BF Score: 98.29, mean IOU: 90.78% (test set),
DSC: 95.16% (calculated on IOU)
Two binary U-Net classifiers were selected for lumen and spine
Lareyre et al. [71] Lumen segmentations. Thrombus segmentation using U-Net. Networks trained on
202 1' CTA Thrombus 2D U-Net top of an expert system initial segmentations with active contours for the
Spine semantics of interest.

DSC: 82.66% (Lumen), 89.18% (Thrombus)
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TABLE XIIl. Data Generation techniques

Synthetic

Literature Modality

Modality

Method

Highlights

Intermediate

Velikova, et al. [29] CT CUT
Unet

Representation

2024 us (Features)

An Ultrasound Simulator generates synthetic US data features
from Computed tomography ground truth. An image-to-image
translation network (CUT) learns the Intermediate
Representation to Ultrasound relation. Organ segmentation by
U-Net is trained on Intermediate Representations. The
inference process converts real US images to Intermediate
Representations and subsequently performs organ
segmentation. Dice Similarity Coefficient (DSC): 90.4% and
88.0% on test data.

Chandrashekar et al. [60] NCCT CTA

Cycle-GAN
2023 Con-GAN

Paired NCCT to CTA image transformation for preoperative
data. Con-GAN and Cycle-GAN training.
Accuracy: 86.1% (Cycle-GAN), 85.7% (Con-GAN)

Lyu et al. [54]

2023 NCCT CTA

novel GAN

Paired NCCT to CTA image transformation for preoperative
data. The arhitecture includes a generator module (image
synthesis, encoder-decoder), a corrector module (adapt to

CTA, encoder-decoder) and a discriminator (synthesis
evaluation, error estimation).
Accuracy: 86%, Sensitivity: 87%,Specificity: 98%

Hu et al. [62]

2022 NCCT

CECT

U-Net based GAN

Paired NCCT to CECT image transformation for preoperative

data. U-Net like generator using wavelet transform modules.
Lipschitz constraints to discriminator.
F1-score: 85%, Precision: 79%

Liet al. [64]

2022 CTA Synthetic CTA

novel CNN

Synthetic preoperative data using CTA reconstruction. Noise
free standard dose and simulated low dose images to train
novel CNN and learn the noise relations of low-dose signal.
An iterative minimization/optimization procedure is done
which employs DL image correction, projection, comparison,
high-quality data synthesis.

I. COMPUTATIONAL REQUIREMENTS AND COST ANALYSIS
In this subsection, the authors collected several factors ob-
served in some of the studies of interest to indicate the de-
mands of each model demands in terms of hardware resources
and relevant development needs. The respective summary in
Table XIV includes the execution time, the size of the model
in memory or the number of trainable parameters, and the
hardware that was used to perform the relative job within
the declared time, together with the modality processed, the
model developed and the semantics to be predicted.

Researchers note that only a minority of studies report
detailed and/or accountable data on what these methods re-
quire to function. The vast majority of studies solely focus on
precisely predict the entities of interest, but still its difficult
to have an insight on what hardware and circumstances this
method could be hosted, and thus to argue on the specific
applicability concerns due to resource limits. As reported in
most studies, such DL models usually use powerful CUDA
enabled accelerators to train, as indicated by the respective
GPU employed to all work that reports their costs, and the
use of very large memory modules larger than 10GB is also
preferred, which is also mandatory to most cases, considering
a model size like tens of millions parameters to train on 512p
3D segments.

In addition, this cost is also relevant to the model size
specifications, the input sizes, or the train methods, which
introduce more complexity to accurately estimate the exact
resource requirements. Even for studies that reported relevant
parameters, the authors observed that quantified resource lim-
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its and reports are usually found in manuscripts. As of train-
ing and testing time reported, the methods report solutions
which specifically claim to successfully handle large Imaging
Volume segments instantly [11], [43] and large amount of
slices per second, while all relevant methods do report short
development time requirements (few hours / days).

Regarding an overall insight on the effectiveness level of
distivnct techniques, the results themselves as seen in Figure
10, all tasks of interest and method categories do highlight
the wide techniques that could be used towards the AAA
annotation procedure. Still, the specific semantics of interest
seem to remain an open challenge to optimize (like the ILT
prediction), though the general effectiveness which is some-
what leveraged by a better effectiveness on predicting the "big
category", results in overall metrics to be higher for the overall
procedure.

J. QUANTIFIED QUALITY ASSESSMENT

In this section, we reside the Risk of Bias and Applicability
Concerns’ visualized results in detail. Table XV presents the
detailed points’ of interest estimations for all studies as a
traffic light plot. Within this, a green dot indicates that the rel-
evant domain was found to positively meet any expectations
set by the research community to consider a robust method
as questioned within the QUADAS-II procedure. An orange
dot denotes that some of the expectations’ considered diverge
from what was typically expected from the reviewers, or that
some of the questions could not be accurately determined by
this study reviewers. A red dot proposes a greater concern
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TABLE XIV. Performance Cost

Resources & Network

Literature Modality Semantics Method Training Time Testing Time Size
Aort Aorta: 9.5min
Kim et al. [78] ot Theomb 3D U-Net Thrombus: 2.1min NVIDIA TITAN RTX,
2024 ombus ensemble Calcifications/Vessels: . 24,220 MiB
Calcifications i
1.1min
HPC cluster
Roby et al. [55] CTA Lumen 2D U-Net B mIJinilasz 2CPU .40 cores
2025 Outer Wall 12 %t i 384GB RAM
P, saggital view 2 NVIDIA V100
NVIDIA RTX 4090,
Wan et al. [50] 24GB
2024 CT Aorta Encoder-decoder - - 84.42M params
57.71 GFLOPS
Lumen
Zhang et al. [79] RLef‘l /ARight NVIDIA V100
ang 62(;‘2'5 CTA Suen?\/lesrerelgric Encoder-decoder - - TENSOR CORE
P 91.4 GMac (FLOPs)
Artery
Aneurysm
Mavridis et al. [23] Aorta NVIDIA 4090, 24GB
2024 CTA Aneurysm U-Net B B 4.8 M parameters
Lyu et al. [48] 2d U-Net 5.5min+3.1min/epoch/48x512p 2x Tesla V100,32GB
2024 CTA AAA Wall ZoomNet patch ) 5M + 32M parameters
Ascending aorta
. NVIDIA TESLA P100,
Van Praagh et al. [95] PET/CT Aortlc.arch 3D U-Net } 102-370 sec / 512p 16GB,
2023 Descending aorta scan .
N Microsoft Azure VM
Abdominal aorta
Lumen: 25 £+ 1
. s/scan; Thrombus:
Spinella et al. [52] CTA Lumen U-Net & - 63 & 14 s/scan NVIDIA RTX 2080Ti
2023 ILT attention U-Net .
Screening: 7.1 + 1
min/scan
Mu et al. [26] Cascade U-Net 2x TESLA V100, 64GB
2023 CECT Vasculature based 96.02 s/epoch - 18.66M parameters
NVIDIA
Maetal. [65] NCCT Lumen Encoder- 96.02 s/epoch - GTX1080,12GB
2023 Thrombus Decoder
18.66 M parameters
Mean 2.5min /
Caradu ;to;lz' 441 CTA I’i“]lllrrl(];rrllbus U-Net - patient -
i range 0.65-4.6min
Axial 862
Brutti et al. [37] Lumen Sagittal 862 .
2022 CTA Thrombus U-Net Coronal 1294 60 sec. NVIDIA RTX 2080Ti
Coarse 200
Chung et al. [45] Lumen 20sec. 4x NVIDIA RTX
2022 CTA Thrombus U-Net end-to-end 2080T:i
Lareyre et al. [71] Lumen Binary model: 2h
2021 CTA Thr(s);nizlels U-Net based Multileass model: 10h - NVIDIA TITAN RTX
Fantazzini et al. [57] .
2020 CTA Aorta U-Net - 25 + 1 sec./scan NVIDIA RTX 2080Ti
DetectNet Model size(HED on
Lépez-Linares et al. [94] . e . 35 img/s ROI): 56MB, 14.7M
2018 CTa ILT(with wall) modified HED Zh39min. (Region of Interest) params, NVIDIA RTX
network .
2080Ti
Smyrlis et al. [51] . NVIDIA RTX 3060
2004 CTA Aorta YOLOVOC - 69.45 ms/image 27.90M params
Lumen-only [] 20 [ cTA —_—
Aneurysm-only ——
Multiclass ——i
Unspecified P CECT ~—
Other ro—
Porta+aneurysm ——
ILT-only - 30 e NCCT/CT i
04 o5 o6 07 o8 ) To 0 o5 o6 o7 0% s To 0 o5 o6 o7 s ) To
Dice similarity coefficient (median, IQR) Dice similarity coefficient (median, IQR) Dice similarity coefficient (median, IQR)
(a) Task to DSC (b) Dimension to DSC (c) Modality to DSC

FIGURE 10. Forest plots summarizing reported DSC across segmentation pipelines. Points indicate group medians and error bars the interquartile range
(IQR). (a) DSC by target semantics (task group), (b) DSC by network dimensionality (2D vs 3D), and (c) DSC by imaging modality.
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that this research may be biased or not understood as fully
justified.

In order to assess how closely the methodology followed
aligns with QUADAS-II checklist items, the authors consider
all the relevant question set and define the level of concern
for each domain for how confident was realized to be robust,
according to their point of view. For the overall quality level
to be determined, QUADAS-II does set the strict "any high"
consideration, so the authors using this prototype attempt
to highlight points of interest that each methodology could
align. In general, nearly all studies found were labeled as
"Unclear" or "High" in at least one or more domains. All
studies do employ experimental methods, and the domain
that was found to raise the least concerns was the "Reference
Standard" regarding the methods’ applicability. Nearly all AI-
Assisted pipelines were considered to show a fair potential to
be applied in industry, and nearly all researchers included in
the study were understood to argue on novel optimizations
towards building an automated AI-Assisted method to delin-
eate the annotation of the AAA region and quantification of
the findings. On the other hand, when discussing the same
domain risk of bias, the concern level increased slightly. The
methods themselves were overally considered as fine, with
respect to the divergence on what each research team tries to
address using the specific Al model, and only a 5% of them
was observed not to fully justify its considerations.

When talking of the Index Test, a total of 23% of studies
were not found to fully report the Index test criteria, while 8%
of them were considered to raise greater concerns about the
Al model induction process. When it comes to applicability,
the vast majority of the research studies (82%) was found to
comply on high applicability standards, thus being able to par-
ticipate to a such automated Decision Support schema, with
respect to the Al inaccuracy, which itself triggers large re-
search discussion and experiments, due to the open-problem
nature of the Segmentation, Detection, Classification and
relevant tasks for their precision optimization. However, the
AAA Al models discussed in this study were found to funda-
mentally argue on a good potential and the respective reported
DSCs are often observed to reach> =90%. Most concerns
in literature were spotted to the Patient Selection methods,
where almost half of the studies were not found to broadly
include all circumstances of interest to build their models,
with respect to the task they try solve.

The respective summaries are shown in Table 11 for the
Risk of Bias Concerns and Table 12 for the applicability
Questions.

V. DISCUSSION

This section provides a summary of the current state of DL
applications for the diagnosis and management of AAA and
how it should be performed, based on the findings of the
present review. Emphasis is placed on the types of tasks
addressed, the evolution of DL methodologies, and the nature
of the datasets used throughout the literature. A comparative
analysis with previous reviews, summarized in Table XVI,
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Risk of Bias Concerns' Estimation Across Study Domains

Patient Selection 38%

Index Test 17%

Domain

Reference Standard a1%

Flow & Timing
== Low Risk

Unclear Risk
= High Risk

0 10 20 30 40 50 60 70 80 90 100
Proportion Across Categories (%)

FIGURE 11. Risk of Bias Concerns’ summary with respect to Quadas Il
evaluation principles

Applicability Estimation Across Study Domains

Patient Selection

Index Test

Domain

Reference Standard

overall

== Low Risk
Unclear Risk
= High Risk

0 10 20 30 40 50 60 70 80 90 100
Proportion Across Categories (%)

FIGURE 12. Applicability Concerns’ summary with respect to Quadas I
evaluation principles

is also included to contextualize our approach in relation to
existing work. In doing so, this discussion aims to situate the
reviewed studies within the broader research landscape and
outline emerging directions in the field.

In contrast to earlier reviews identified in our screening
process—many of which focused narrowly on segmentation
or employed outdated DL techniques—this study incorpo-
rates literature published up to early 2025, reflecting cutting-
edge developments such as transformer-based architectures
and multimodal fusion approaches. Moreover, this review
adheres strictly to the PRISMA methodology, with 1002
records initially identified and screened through a multiphase
selection process guided by predefined exclusion criteria.
This level of procedural transparency and methodological
rigor, which is seldom observed in prior reviews, enhances
reproducibility and mitigates the risk of selection bias. Ear-
lier reviews often lacked clear eligibility criteria or merged
disparate types of study (e.g., combining biomechanical sim-
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TABLE XV. Quadas II - Risk of Bias and Applicability Concerns

Risk of Bias

Applicability

Author

Patient
Selection

Index Test

Reference
Standard

Timing and
Flow

Patient
Selection

Index Test

Reference
Standard

Overall

Kim et al., 2024 [78]
Ginzburg et al., 2024 [96]
Roby et al., 2025 [55]
Wan et al., 2024 [50]
Zhang et al., 2025 [79]
Mavridis et al., 2024 [23]
Zhang et al., 2024 [59]
Lyu et al., 2024 [48]
Postiglione et al., 2024 [74]
van Praagh et al., 2024 [95]
Epifanov et al., 2024 [76]
Chatterjee et al., 2024[28]
Velikova et al., 2024 [29]
Ma et al., 2024[92]
Hassan et al., 2024 [25]
Spinella et al., 2023[52]
Borisova et al., 2023 [36]
Mu et al., 2023 [26]

Ma et al., 2023 [65]

Mu et al., 2023 [66]
Chandrashekar et al., 2023 [60]
Lyu et al., 2023[54]
Wang et al., 2023 [40]
Jung et al., 2023 [41]
Saleem Javeed et al., 2023 [30]
Zhang et al., 2023 [84]
Tomihama et al., 2023 [80]
Abdolmanafi et al., 2023 [32]
Chandrashekar et al., 2022 [93]
Caradu et al., 2022 [44]
Burrows et al., 2022 [27]
Brutti et al., 2022 [37]
Wang et al., 2022 [53]
Chung et al., 2022 [45]
Wang et al., 2022 [42]
Miao et al., 2022 [56]
Kongrat et al., 2022 [63]
Hwang et al., 2022 [69]
Siriapisith et al., 2022 [81]
Salvi et al., 2022 [61]
Dziubich et al., 2021[46]
Golla et al., 2021 [85]

Hu et al., 2022 [62]
Lareyre et al., 2021 [71]
Zheng et al., 2021 [47]
Zheng et al., 2019 [38]
Mohammadi et al., 2019 [70]
Hahn et al., 2019 [35]
Dziubich et al., 2020 [39]
Habijan et al., 2020 [31]
Hahn et al., 2020 [58]
Fantazzini et al., 2020 [57]
Hong & Sheikh, 2016 [33]
Lopez-Linares et al., 2018 [43]
Lépez-Linares et al., 2018 [94]
Lépez-Linares et al., 2019 [75]
Lu et al., 2019 [82]
Lépez-Linares et al., 2017 [73]
Salvi et al., 2021 [67]
Koger et al., 2024 [83]
Smyrlis et al., 2024 [51]
Bendcevi€ et al., 2022 [24]
Rajmohan et al., 2024 [72]
Lopez-Linares et al., 2018 [94]
Camara et al., 2022 [49]

Li et al., 2022 [64]
Adam et al., 2021 [77]

VOLUME XX, 2025

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

21



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3644792

Ntetska and Smyrlis et al.: From Pixels to Prognosis: Deep Learning Methods in Abdominal Aortic Aneurysm Imaging

ulations with image-based diagnostics) without appropriate
stratification, thereby reducing interpretability.

The current literature reveals a wide research landscape
that includes all known DL basic tasks. A substantial propor-
tion of studies focus on image segmentation, particularly of
the aneurysmal sac, intraluminal thrombus (ILT) and adjacent
anatomical structures, using CT or CTA. Although segmen-
tation remains a core task, comparatively fewer studies have
been found to address classification, rupture risk prediction,
or comprehensive clinical decision-support systems. In fact,
the classification task is also implied in the downstream de-
tection and segmentation efforts, where some logic is also
employed to determine the label of an entity of interest
(from region of interest to pixel, respectively). Subsequently,
within the segmentation task, distinct approaches were found
to annotate a number of semantics (multiclass segmentation
for aorta, thrombus, and others), a single semantic (aorta
segmentation including any thrombus), and Region of Interest
segmentation methods, which segment a sub-region of the im-
age as soon as a detection model spot an aneurysm instance.

In particular, most DL models have been developed using
single-center retrospective datasets with limited sample sizes
and minimal external validation, often relying on in-house
institutional data. This could question the generalizability and
reproducibility of the findings and their actual scalability in-
the-wild, when real-world conditions shall impose significant
instance variations, for example various-sized ILT and cal-
cifications. In addition, comorbidities such as fat presence
or other pathological findings that may be present in a CTA
capture and the patient’s history, such as a different disease
that coexists, or signs of previous surgery.

Most of the research discussed in this review focuses on
preoperative planning and early detection of AAA in CTA.
Only a few studies are specialized on postoperative screening
(8 works), while another 10 studies involve preoperative and
postoperative data. Since postoperative data can present addi-
tional objects of interest to be detected/segmented, the entire
AAA detection and delineation landscape requires extra data
and effort to be done for modeling, in order to learn object
cases like stent grafts[40].

Current research focuses on advanced architectures includ-
ing attention mechanisms and 3D convolutional networks,
yet the field lacks standardized benchmarks together with
open-access datasets, which would enable fair model compar-
ison and collaborative development. This systematic review
reveals that DL applications for AAA imaging use single-
center retrospective data sets that lack diversity and/or expert
validation. The lack of standardized protocols across imag-
ing methods, along with processing pipelines and annotation
approaches, creates challenges for meaningful result compar-
isons. For example, many different taxonomies of interest are
observed across studies, often containing differently defined
classes of interest and number of semantics. Usually, the aorta
entity is distinguished with or without the ILT, while only
a few other entities are yet modeled (calcifications or fat).
In fact, for the entire image segmentation, only two studies
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address calcification detection in modeling [78], [76], while
in Region of Interest segmentation only one [32].

However, the definition of the exact boundary of each
entity could differ from study to study. Thus, the results’ com-
parison cannot always be straightforward, although the exact
visual definition of each entity of interest could be questioned
with respect to the ability of the models to distinguish it. In
case of semantic segmentation for ILT, acceptable definitions
could include the entire aorta wall, or just the additional
thrombus made. Or, the calcifications together with the aorta
wall and separately. Most studies yet experiment with one or
two classes at most and usually model a distinct aorta and ILT
entity.

As for DL architecture designs, researchers on AAA re-
cent segmentation methods have mainly trusted the U-Net
schema to build their models on top, or as a first choice
option Figure 13 depicts this distribution, where 20 studies
were observed to involve U-Net as a first choice solution,
while 10 aggregate the usage of some other design. Within
this concept, sophisticated variations have been proposed,
even involving signal processing methods and the frequency
domain [26], or data fusing object coordinate information in
the model[81], to enhance the model precision. The descent
performance of this schema is open to further research, while
other architectures presenting promising success in early
experimental stages[51], are also open to further study for
their applicability on the AAA delineation task. Likewise, the
novel architecture designs involving the traditional convolu-
tion and the recent attention mechanisms may also provide
descent model proposals for AAA DL modeling.

m U-Net
® Non U-Net

FIGURE 13. Architecture of the proposed approaches

The path forward also demands standardized evaluation
frameworks together with larger publicly available datasets
that include transparent reporting of data processing and
computational resources. A curated and openly accessible
"golden dataset” would establish a major milestone which
enables consistent evaluation of algorithms through a shared
benchmark. The clinical adoption of models depends on both
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interpretability and compliance with regulatory standards to
achieve safe and effective use in healthcare settings.

A. LIMITATIONS OF INCLUDED STUDIES

The beneficial utility of the included studies is impacted by
a number of limitations, notwithstanding the encouraging
advancements found. First, most studies are primarily based
on single-center retrospective data sets, which are typically
obtained from homogeneous groups. This limits the scope of
generalizing results and applying models to heterogeneous
clinical settings, while the model scalability in-the-wild is
questionable to perform in the presence of real world condi-
tions, where the unseen data variability significantly increase.

Furthermore, despite the extensive usage of cross-
validation evaluation in the vast majority of studies, further
structured risk-of-bias evaluation tools were limited in the
included studies. These tools help to precisely infer internal
validity, define likely sources of bias, and accurately quantify
methodological quality. Moreover, external validation was
rarely performed. Most of the studies only measured model
performance on internal test sets. Similarly, few papers pro-
vided uncertainty estimation (e.g. confidence intervals), lim-
iting the models from application in clinical decision support
where robustness and interpretability are required.

In addition, annotation protocols varied considerably. Most
ground truths were based on single-expert manually seg-
mented data, with unstated inter-rater reliability. This intro-
duces subjectivity and limits the comparability of evaluation
metrics across studies. Due to the variably posed class def-
inition and the evaluation protocols, the ability to straight-
forwardly compare distinct models is limited, namely, across
every segmentation method to its likewise models. Finally,
the lack of statistical synthesis, for example meta-analysis or
effect size comparisons, limits the quantitative comparison
of overall performance trends. The significant variations in
evaluation protocol, preprocessing, and outcome definitions
accross studies significantly limits the ability to make exten-
sive straightforward quantitative comparisons.

B. COMPARATIVE ANALYSIS WITH PRIOR REVIEWS

In order to situate this review in the current literature, it is
important to compare it to the previous efforts in venturing
into DL-based applications in AAA imaging. This compari-
son enables us to identify methodological excellence, shared
loopholes, and shifting trends in architectural design, appli-
cation of datasets, and clinical focus. This section outlines
how our review builds upon previous work through a more
complete and systematic synthesis of the field.

Among the related works, Raffort et al. [98] provided one
of the earliest overviews of artificial intelligence in AAA,
analyzing more than 9,900 CT scans. While their review
highlighted early advances in segmentation and risk stratifi-
cation, it lacked a structured methodological framework such
as PRISMA. Similarly, the works by Lareyre et al. [99] and
Baek et al. [99] offered narrative reviews on segmentation
techniques and translational potential but did not undertake
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a systematic evaluation of model quality or study design,
thereby limiting reproducibility and bias assessment.

In contrast, Kodenko et al. [100] employed a PRISMA-
guided methodology in their systematic review of eight stud-
ies focused on opportunistic AAA screening in routine CT
imaging. While their structured approach marked a method-
ological advance, the review primarily assessed diagnostic
accuracy and did not delve into architectural comparisons or
data quality appraisal.

More recent contributions, such as those by Huang et
al. [14] and Wang et al. [101], [102], emphasize the poten-
tial of DL models—including U-Net, nnU-Net, and CNN
variants—for segmentation and large-scale AAA screening.
However, these studies remain narrative in form and omit key
elements such as bias assessments, protocol registration, or
reproducibility evaluation.

This systematic review presents a focused and up-to-date
synthesis of recent advances in DL methods for AAA diagno-
sis, segmentation, and management. Several distinct method-
ological and analytical characteristics distinguish this work
from prior reviews, presented in Table XVI

Initially, the thematic scope is precisely delimited. Unlike
previous reviews that group together aneurysms of varying
anatomical regions or include multiple cardiovascular disor-
ders, this review focuses exclusively on AAAs and image-
based DL applications on advanced tomographic modalities
such as CT, CTA, and MRI (Section II-B). Ultrasound and
simulation-based studies were excluded to ensure clinical
relevance and high spatial fidelity.

In addition, this study adheres rigorously to the PRISMA
framework, implementing a transparent and reproducible
methodology. From an initial pool of 1,921 retrieved records,
peer-reviewed studies were ultimately included, with well-
defined eligibility criteria applied across multiple databases
(see Figure 1). In contrast, many earlier reviews lack clarity
regarding selection flow, screening tools, or exclusion ratio-
nale (Table XVI) [99], [103], [14], [100], [101], [102].

It is also noteworthy that a significant number of previous
contributions take the form of narrative reviews [99], [103],
[14], which, while often insightful, lack systematic coverage
or transparency in selection criteria. In contrast, only a few
systematic reviews have been published to date [100], [101],
[102], and most include relatively limited numbers of studies,
often fewer than 20, highlighting a gap in comprehensive and
methodologically robust synthesis efforts.

Moreover, the coverage of the literature in this review spans
an entire decade (2015-2025) (Table I), capturing not only
conventional CNN architectures, but also newer transformer-
based and hybrid models such as TransUNet. These recent de-
velopments are largely overlooked in previous surveys, which
typically emphasize early convolutional models while ne-
glecting architectural innovation and hybrid attention mech-
anisms.

Another key strength lies in the structured dual-layer tax-
onomy adopted for literature analysis. Studies are catego-
rized both by DL task—classification, detection, segmenta-
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TABLE XVI. Review works on decision support for Abdominal Aortic Aneurysm

Literature Title Typ? of Year Included Covered Study Period Key Research Findings
Review Papers
Al improves AAA image segmentation, growth and rupture
. Atrtificial Intelligence in Abdominal Aortic . May 2019 — January risk prediction, and preoperative planning. It supports
Raffort et al.[98] Aneurysm: A Systematic Review Systematic 2019 34 2000 personalized treatment and enhances postoperative outcome
evaluation.
Current state-of-the-art and utilities of The study highlights the need for improved AAA management
machine learning for detection, monitoring, through personalized strategies. It discusses the RAW index
Baek et al.[99] growth prediction, rupture risk assessment, Narrative 2022 11 Not specified for rupture risk, EVAR/OSR outcomes, and how
and post-surgical management of abdominal patient-specific biomechanical factors can guide prediction
aortic aneurysms and intervention.
. . - The review assessed Al methods for AAA detection in
Diagnostic accuracy of Al for opportunistic ast CT. ino high sensitivi specifici
screcning of abdominal aortic aneurysm in ) N noncontrast C I, reporting high sensitivity (95%), speci icity
Kodenko et al.[100] . . N Systematic 2022 8 Not Specified (96.6%), and Dice score (0.96). However, study heterogeneity
CT: A systematic review and narrative - R
N and unbalanced datasets raise concerns, indicating a need for
synthesis . N I
standardized, robust validations.
This work emphasizes the limitations of size-based AAA
Risk prediction for abdominal aortic diagnosis and advocates for personalized strategies using ML
Sokol & Nguyen[103] aneurysm: One size does not necessarily fit Narrative 2023 12 Not Specified and molecular imaging. It highlights demographic disparities,
all especially underdiagnosis in women, and calls for inclusive
clinical trials and broader risk assessment models.
Deep learning improves AA imaging accuracy and treatment
Deep learning techniques for imaging . . planning. Models like ResNet and U-Net support lesion
Huang etal.[14] diagnosis and treatment of aortic aneurysm Narrative 2024 23 Not specified segmentation and stent prediction. The study highlights
clinical benefits and research gaps.
Deep Learning Models for Aorta 'Thl:Q syslemalllc. review t()un.d [')L models blgh}y etiegllve for
Segmentation in Computed Tomography ) aorta segmentation in CT, with a pooled_D!ce score of 96%. It
Wang et al.[101] . N Systematic 2024 16 Up to March 2024 highlights geographic performance variation, limited use of
Images: A Systematic Review And S . ; )
N cross-validation, and moderate reporting quality. DL is shown
Meta-Analysis . R N X
to support accurate and standardized cardiovascular diagnosis.
This meta-analysis found DL models achieved 96% sensitivity
The role of deep learning in aortic aneurysm and 97% specificity for AA detection, with a Dice score of
Wang et al.[102] segmentation and detection from CT scans: Systematic 2024 17 2020-2024 94% for segmentation. Performance varied by region, and
A systematic review and meta-analysis larger training datasets improved accuracy. DL integration
may enhance early diagnosis and outcomes.
PP . . Comprehensive summary of deep learning approaches
De:;:::; s;&p:;hogé:b?;:;:?LAg:lc applied to CT and MRI data for abdominal aortic
This Work Y P 8 Systematic 2025 68 2015-2025 aneurysm; covers d d ion, image pr i

Advanced Imaging techniques: A
Systematic Literature Review

segmentation, and quantification to support diagnosis,
monitoring, and treatment planning.

tion, forecasting, and data generation—and by the specific
anatomical targets modeled (e.g., lumen, intraluminal throm-
bus, aortic wall, calcifications). This categorization provides
clinically meaningful insights and supports a more targeted
interpretation of model performance (Tables V-1V).

Equally important is the emphasis on translational rel-
evance. Only studies based on real patient-derived imag-
ing data were included, with synthetic, animal, and purely
simulation-based approaches excluded (Section II-C). The
review also highlights the disproportionate reliance on private
datasets, underscoring current barriers to reproducibility and
external validation (see Figure 3).

Two systematic reviews published in 2024 by Wang et
al. [101], [102] deserve closer scrutiny. Despite sharing sim-
ilar themes and timelines, these works refer to substantially
different sets of primary studies. Several relevant papers in-
cluded here are entirely omitted from both reviews, despite
thematic alignment. This inconsistency raises concerns re-
garding the comprehensiveness and methodological trans-
parency of their search strategies.

Furthermore, the inclusion logic applied across both Wang
reviews appears ambiguous. While one nominally targets
aortic segmentation from CT [101] and the other focuses on
aneurysm detection [102], several studies that fit both cate-
gories are omitted from both. No use of PRISMA flowcharts,
detailed exclusion criteria, or bias assessments is reported.
Architectural stratification is minimal, with no mention of
post-2022 models such as YOLOV9 or attention-enhanced
segmentation frameworks.
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Additionally, both reviews restrict their scope to CT imag-
ing and ignore contributions based on CTA, CECT, or hybrid
modalities. This limitation narrows the clinical applicability,
especially in the context of preoperative planning and follow-
up scenarios, where CTA remains the gold standard. No dis-
cussion is offered regarding postoperative AAA management
or multi-stage modeling.

Finally, a comparison of coverage (Table XVI) illustrates
that each Wang review includes fewer than 20 studies, while
this review synthesizes works covering all the major DL tasks
and stages of the disease. The broader scope, methodological
rigor, and greater granularity presented here offer a more
accurate, actionable, and timely perspective on DL’s evolving
role in AAA decision support.

C. FUTURE OF THE RESEARCH
Future directions in AAA research are increasingly shaped by
the convergence of DL, clinical needs, and data-driven preci-
sion medicine and treatment. A key priority is the creation and
open distribution of large, multicenter, and demographically
diverse datasets that reflect the heterogeneity of clinical prac-
tice in terms of imaging protocols, patient demographics, and
pathology. This is crucial to overcome barriers related to data
availability and privacy, as well as institutional constraints
that often limit data sharing. Managing these challenges will
require standardized frameworks for data quality, storage, and
analysis, along with robust policies for privacy protection.
Interdisciplinary collaboration is essential to advance these
efforts. Partnerships between clinicians, biomedical informat-

VOLUME XX, 2025

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3644792

IEEE Access

Ntetska and Smyrlis et al.: From Pixels to Prognosis: Deep Learning Methods in Abdominal Aortic Aneurysm Imaging

ics researchers, and technical experts can accelerate transla-
tional research and bridge the gap between algorithm devel-
opment and clinical implementation.

At the modeling level, future research must prioritize the
development of explainable DL models. Traditional "black-
box" systems are increasingly being further understood and
enhanced by transparent models incorporating features such
as saliency maps and uncertainty estimation. Not only do
these tools enhance interpretability for programmers, but also
support clinician-in-the-loop workflows, increasing trust, and
facilitating real-world adoption and scalability.

Recent technological advances for DL allow the integra-
tion of imaging data with additional patient-specific informa-
tion, including electronic health records, genomic profiles,
and biomechanical simulations, to enable personalized risk
stratification and tailored management strategies in advanced
decision support systems. The use of advanced architectures
for intelligent modeling shall further improve the precision
and generalizability of the predictive ability on the distinct
subtasks involved. The invention and development of more
accurate DL methods on the predictive tasks of interest re-
main an open research field for novel techniques to be de-
signed on top of the convolution and attention operations to
improve the predictive capability for the classes of interest.

To the time being, the experimental works’ results do allow
to build sophisticated Decision Support pipelines, presenting
reasonable precision in documents (DSC over 90%), thus
making it possible for this pathology to apply on a reduced
risk of bias. Although, a relevant concern is still raised due to
the natural inaccuracy of Al and open-problem condition to
the algorithm optimization direction in order for this research
to deploy. To this purpose to meet, the medical community
standards propose for a broad range of circumstances to
predict, implying relevant data availability and cooperation
needs.

In the meantime, the AAA problem definition shall be
further researched on the classes of interest which can be
precisely learned for the DL models to result in better anno-
tations. In addition, the wider inclusion of more AAA-related
semantics for the modeling and experimental procedures
(such as calcifications and fat) shall provide more detailed
visual and quantitative representations to the decision-support
approaches, while the requirement for accurate modeling
poses an open research challenge. In the AAA cases, some
of the classes of major medical interest are still supported
by non DL procedures for visual annotation. Though these
algorithms still present a relevant prediction error and an
open-problem challenge, the authors consider the modelling
interest as a whole as an open challenge.

Regarding the DL architectures themselves, although re-
cent U-Net schema models have yet presented remarkable
precision clues, research on DL architecture designs remains
open to improvements on top of this architecture or introduc-
ing novel ones, while the AAA problem still poses significant
learning challenges for the segmentation task, the taxonomy
of interest, and the actual entities of interest that are finally de-
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tected by models to be included (e.g. calcifications). Although
segmentation and classification tasks have shown substantial
progress, applications of DL in quantitative measurement and
rupture risk prediction remain underdeveloped. Future studies
may focus on clinically validated longitudinal models capable
of capturing the dynamic progression of AAA and supporting
continuous monitoring.

Lastly, the field must commit to transparent evaluation
practices. Standardized reporting of computational resources,
validation protocols, and benchmarking on open datasets will
be necessary to ensure comparability, methodological rigor,
and clinical relevance. Regarding the reportings performed in
studies of interest, the authors consider the vast majority of
studies to reasonably justify any Al-modeling and propose
interesting novelties on a descent precision, which is also
proposed by the fact that when inducting the relevant met-
rics into a single (like DSC in this study), the authors can
still observe descent precision in studies overall. However, a
common comparability nomenclature, which yet commonly
exists to the distinct Al tasks (advanced metrics that justify
the Al modeling itself, like DSC), could also further expand
to biomedical research community.

As of the resource reportings, all relevant studies that
were observed did report the use of recent CUDA enabled
accelerators with a large memory capacity, which is a rea-
sonable need to Al Training procedures, and also timely
accomplishment time to run. Testing phase reportings in a
minority of studies also suggest a descent performance to
handle such large volumetric data. Besides, a richer report-
ings’ protocol including more system requirements’ insight
could even clearer facilitate more applicability questionings
on automated decision support as a service, and may further
highlight the potential of any method to fit or apply on
candidate devices and recent technology. However, from the
authors point of view, the pipelines themselves, as seen in
the quality assessment discussion (QUADAS-II), were widely
capable of giving positive answers to established signaling
questions.

Together, these trends point to a future where Al-powered
AAA tools are more collaborative, interpretable, personal-
ized, and robust - ultimately improving both research out-
comes and patient care.

VI. CONCLUSION

This systematic review highlights the significant progress
made over the past decade in applying DL techniques to
the diagnosis, segmentation, and management of AAA using
advanced imaging modalities such as CT, CTA, and, to a
lesser extent, MRI. A total of studies published between 2015
and early 2025 were included, providing a comprehensive
overview of the evolving methodologies and clinical rele-
vance of DL approaches for AAA assessment.

The review demonstrates that segmentation remains the
most prevalent application of DL in AAA research, with 40
studies focused on delineating structures such as the aorta
lumen, intraluminal thrombus (ILT), calcifications, and the
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outer aortic wall (Table IV, Table IX, Table X). U-Net and
its variants (e.g. 2D U-Net, 3D U-Net, Attention U-Net, nnU-
Net) were the dominant architectures, achieving consistently
high segmentation accuracy. For example, Roby et al. [55]
reported a DSC over 95% for aortic segmentation and two
distinct classes, while Kim et al. [78], an ensemble U-Net
model, achieved over 92.5% performance (DSC) for aorta and
thrombus, while additionally addressing calcification detec-
tion.

Despite promising performance metrics, several challenges
hinder the clinical translation of these models. Data limi-
tations remain a major concern. Most of the studies used
individual center-based in-house datasets (n = 57), with only
7 studies entirely using open datasets (Figure 3, Table II).
This limits any external validation possibility. Furthermore,
the findings reveal that MRI-based studies are notably un-
derrepresented, despite the advantages of MRI in soft tissue
characterization and non-ionizing radiation. The findings re-
veal that CTA is the preferred standard for early and accurate
screening, as a fast and affordable method to accurately cap-
ture the presence of AAA.

Another notable improvement refers to the interpretabil-
ity and transparency in DL systems. Most models function
as black boxes, without offering explainable outputs to re-
searchers, or to facilitate clinical decision-making in vascular
care workflows and enhance screening. Furthermore, only 13
out of studies integrate into the quantification of any finding,
such as aneurysm diameter or thrombus volume, and less than
a third were found to report computational cost data, limiting
evaluations of scalability and clinical feasibility.

In terms of DL tasks, while segmentation was most seen,
classification (8 studies) and detection (3 studies) of AAA
were also explored, often using transfer learning with ar-
chitectures such as ResNet, DenseNet, and EfficientNet (Ta-
ble VII, Table VIII). However, only one study addressed fore-
casting on the aneurysm evolution and five studies worked
on data generation, highlighting less interest in rupture risk
prediction and synthetic data generation respectively, with DL
on CTA and MRI modalities and the tasks defined(Table V).

This work attempts to pose a strict PRISM A-based method-
ology and a narrower focus on AAA-specific, imaging-based
DL applications, with likewise researches, such as Raffort
et al.[98], Lareyre et al., or Kodenko et al.[100], to study a
relaxed range of differing fields. This work filters for image-
based AAA studies using actual patient data for DL on CT,
CTA, or MRI (Table XVI), excluding any work on simulation,
biomechanics, and other imaging modalities.

To facilitate the clinical translation of DL models for AAA
diagnosis and management, several critical directions for fu-
ture research emerge from this review. First, the develop-
ment and open availability of large-scale, multicenter datasets
should be prioritized to facilitate model generalizability and
enable robust external validation, able to reflect the variability
of real-world imaging protocols, patient populations, and
conditions.

Furthermore, future work could improve the interpretabil-
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ity of DL models, incorporating explainable AI mechanisms
to foster clinical trust and provide transparency in decision
making, particularly in scenarios involving surgical plan-
ning and rupture risk assessment. In addition, integration of
imaging-based outputs and complementary patient-level data,
such as electronic health records, genetic information, and
biomechanical simulations into advanced DSS could support
a more comprehensive and personalized approach to disease
assessment.

Moreover, while substantial progress is observed on the
segmentation task, further research could integrate robust au-
tomated quantification techniques and longitudinal analysis.
Current studies seldom address AAA growth monitoring or
rupture prediction areas to improve treatment outcomes. DL
models tackling these predictive tasks along with quantifica-
tion methods could be evaluated on longer-term clinical time-
lines. In addition, further research could provide additional
results on the semantics of interest that could be annotated
on such imaging methods, including a wider range of comor-
bidities and AAA-related pathology, such as fat presence and
detection of calcification.

Lastly, the field would benefit from standardized bench-
marking protocols and evaluation frameworks to allow fair
comparison between studies and promote scalability to real-
world conditions in the wild. Open-source implementations,
validation challenges, and cross-institutional collaborations
can drive innovation and facilitate the integration of research
into clinical tools.

In general, this review underscores the considerable po-
tential of DL in improving AAA management, while also
illuminating the methodological and practical challenges that
remain. To the authors’ considerations, the transition from
experimental prototypes to reliable, deployable systems and
advanced patient care could benefit by addressing the above
remarks.
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