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Abstract: Electroencephalography is one of the most commonly used methods for extracting infor-
mation about the brain’s condition and can be used for diagnosing epilepsy. The EEG signal’s wave
shape contains vital information about the brain’s state, which can be challenging to analyse and
interpret by a human observer. Moreover, the characteristic waveforms of epilepsy (sharp waves,
spikes) can occur randomly through time. Considering all the above reasons, automatic EEG signal
extraction and analysis using computers can significantly impact the successful diagnosis of epilepsy.
This research explores the impact of different window sizes on EEG signals’ classification accuracy
using four machine learning classifiers. The machine learning methods included a neural network
with ten hidden nodes trained using three different training algorithms and the k-nearest neighbours
classifier. The neural network training methods included the Broyden–Fletcher–Goldfarb–Shanno
algorithm, the multistart method for global optimization problems, and a genetic algorithm. The
current research utilized the University of Bonn dataset containing EEG data, divided into epochs
having 50% overlap and window lengths ranging from 1 to 24 s. Then, statistical and spectral features
were extracted and used to train the above four classifiers. The outcome from the above experiments
showed that large window sizes with a length of about 21 s could positively impact the classification
accuracy between the compared methods.

Keywords: EEG; seizure detection; window size; neural network; genetic algorithm; k-nearest
neighbours

1. Introduction

Epilepsy is the most common condition affecting the central nervous system, where
80% of the patients are citizens from developing or middle-income countries [1]. Besides
the young population, it can also occur in the elderly population (people over 65 years
old) [2]. Epilepsy has a severe economic impact in terms of healthcare needs. It causes
premature deaths and can lead to lost work productivity. Considering all the above reasons,
it is an essential topic in the biomedical sciences [1,3].

Epilepsy is a chronic brain disease characterized by seizures affecting all age groups.
It causes recurrent seizures, ranging from one episode per year to several episodes per
day. There is a distinction between epilepsy and seizures since not all seizures are epileptic
fits. The main characteristic of epilepsy is that it is responsible for triggering unprovoked
recurrent seizures caused by chronic abnormal bursts of electrical discharges in the brain [4].
This process is called “epileptogenesis” and makes epilepsy highly unpredictable. Other
types of seizure disorders can be activated by various causes, which can be measured,
including stroke, tumours, and other space-occupying lesions. Secondary or symptomatic
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epilepsy is epilepsy caused due to an underlying abnormality of the structure of the brain
and is the type of epilepsy where preventive measures can be applied according to various
causes. It can be noted that more than 60% of the cases lack a definitive cause. This epilepsy
type is called primary or idiopathic epilepsy and is not preventable but can be treated using
antiepileptic medicines [3,5].

The occurrence of epileptic seizures is due to a malfunction in the brain, which triggers
a sudden excessive electrical discharge in a group of cells in the brain’s cerebral cortex. This
malfunction causes motor function abnormalities, resulting in tonic–clonic muscle spasms.
The vast and abrupt energy surge triggered by the brain’s neurons is the cause of epileptic
seizures, which show differences in their properties. Seizures range from a few seconds to
severe, generalized, and prolonged convulsions, leading to dangerous and life-threatening
situations. Seizures’ characteristics depend on the specific brain region involved, the extent
of the abnormal electrical discharge and its spread [3,6].

The limited knowledge regarding the human brain creates a challenge in understand-
ing the properties of a brain with epilepsy. The disease’s temporary symptoms include
mindfulness loss, minor (almost undetectable) abnormalities in movement, mild muscle
twitching, and abnormalities in visual, auditory, and gustatory senses and mood. The
epileptic seizures start and finish unexpectedly, without involving interference from the
external environment, and it is possible to remain unnoticed. For this reason, detecting and
measuring epileptic seizures is a challenging task [3,7].

Seizure occurrence is not always connected to epilepsy since, statistically, 10% of the
world population will have one seizure during their life [3]. These nonepileptic seizure
types can be caused by chemical imbalances. If two or more seizures occur without a
specific reason, it may have been caused due to epilepsy. In case of epileptic seizures, the
patient can start receiving antiepileptic medicines to improve their safety and quality of
life. The unpredictable nature of epileptic seizures can be a severe life-threatening cause
(e.g., if they are triggered while driving a car or swimming). The most common method for
diagnosing epilepsy is an electroencephalogram (EEG) signal analysis. EEG signals reflect
the brain’s electrical activity at a given timestamp [3].

An EEG can record the electrical brain activity using a series of electrodes placed on
the patient’s scalp. Brain abnormalities that are not related to epilepsy can be analysed by
studying EEG signals. Soikkeli et al. [8] investigated the generalized slowing of the EEG in
patients with Parkinson’s disease. Wieser et al. [9] studied Creutzfeldt–Jakob disease using
EEG signals while Neto et al. [10] conducted a regularized linear discriminant analysis of
EEG features taken from patients with dementia [3]. Overall, EEG has been used for the de-
tection and quantification of many neurological diseases [11] or conditions [12] or cognitive
states such as stress induction [13,14], thus becoming a significant tool for neurologists.

The study of epileptic seizures analyses EEG signals received before and during
the seizures, which contain patterns that differentiate them from those recorded in a
nonepileptic person. The identification of epileptic seizures is made by observing the
EEG data. For this reason, an EEG signal analysis approach which provides information
regarding the brain’s condition must be applied [3].

This paper explores the impact of the window size on classifying epileptic short-term
EEG signals using four machine learning methods. The machine learning methods used
were a single-layer neural network (SLNN) with ten hidden nodes, trained using three
different training algorithms, and the k-nearest neighbours (K-NN) classifier [15]. The
neural network training methods were the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [16], the multistart algorithm for global optimization problems proposed by [17],
and the modified genetic algorithm (GA) proposed by Tsoulos [18].

This paper is structured into six main sections, starting with an “Introduction”, which
explains the significance of epilepsy, the importance of EEG for its diagnosis, and includes
a short description of the research’s motivation. The “Related Work” section contains
existing work regarding automated methods for diagnosing epilepsy. The “Methods”
section presents four machine learning methods for exploring the window size’s effect
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on classifying epileptic short-term EEG signals. The “Results” section analyses the four
machine learning algorithms’ results presented above using different window types applied
to the University of Bonn epilepsy database [19]. The following two sections contain the
“Discussion” and “Conclusion”. Finally, the “Methods” section describes each machine
learning method used to explore the window size effect on classifying epileptic short-term
EEG signals.

2. Related Work

Existing seizure detection works include the method proposed by Naghsh-Nilchi and
Aghashahi [20]. The proposed approach was based on two eigensystem pseudospectral
estimation methods: eigenvector and multiple signal classification for time-domain EEG
signal pseudospectrum estimation. The pseudospectrum was partitioned into sub-bands,
each having a smaller frequency. Then, a feature extraction stage was applied to produce
the input to a multilayer perceptron (MLP). The MLP classified the input vectors into three
classes: normal, interictal and ictal. Tzallas et al. [21] compared various time–frequency
(t-f) analysis methods for categorizing epileptic seizures EEG segments. A three-stage
analysis was utilized, starting with the t-f analysis and a power spectrum density (PSD)
calculation from each EEG segment. The next stage involved the extraction of a feature set
by measuring the signal segment fractional energy on specific t-f windows. In contrast, the
third stage was the categorization (normal and epileptic) of the EEG segment using artificial
neural networks (ANNs). Martinez-del Rincon et al. [22] used an EEG analysis system for
automatic epilepsy seizure detection that could exploit EEG data’s underlying nonlinear
nature. Hassan and Subasi [23] addresses the automated seizure detection problem using
single-channel EEG signals. The EEG signal segments were initially decomposed using
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
signal processing model. The training and testing data were formed by extracting six
spectral moments from the CEEMDAN mode functions, which were entered as inputs
to the linear programming boosting (LPBoost) classifier. Juarez-Guerra et al. [24] used a
wavelet analysis system for identifying epilepsy seizures from EEG signals. The proposed
system utilized the discrete wavelet transform (DWT) and the maximal overlap discrete
wavelet transform (MODWT) for extracting a feature set. This set was entered as input to
an ANN, which performed the classification task. Hossain et al. [25] used a CNN for feature
learning from raw EEG data to detect seizures on an open-access EEG epilepsy dataset
from the Boston Children’s Hospital [26]. The proposed model extracted spectral and
temporal features from EEG epilepsy data and utilized them to learn the overall structure
of a seizure that was less sensitive to variations. Nicolaou and Georgiou [27] explored the
use of permutation entropy (PE) as a feature for automatic epilepsy seizure detection. Their
method utilized a support vector machine (SVM) for the binary classification task and was
based upon the observation that the PE dropped during a seizure. Shoeb and Guttag [28]
presented a method utilizing an SVM to construct patient-specific classifiers that could use
EEG signals from patients’ scalps to detect the onset of epileptic seizures. Guo et al. [29]
proposed an EEG-based method for automatic epileptic seizure detection, which utilized
the approximate entropy features derived from the multiwavelet transform. These features
were introduced as input data to an ANN for classifying the EEG signals as epileptic or
nonepileptic. Subasi [30] decomposed EEG signals into their frequency sub-bands using
a wavelet transform. Then, these sub-bands were introduced as input to an ANN for
classification into two categories (epileptic and nonepileptic). Moreover, this research
developed and compared classifiers based on feedforward error backpropagation ANNs
and dynamic wavelet networks. The comparison was made to test their accuracy in EEG
signals classification. Ghosh-Dastidar et al. [31] combined the mixed-band wavelet-chaos
methodology [32,33] with a principal component analysis (PCA)-enhanced cosine radial
basis function neural network classifier for classifying EEG signals into three categories
(healthy, ictal, and interictal). Guo et al. [34] proposed a method for automatic epileptic
seizure detection. This method utilized line length features based on a wavelet transform
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multiresolution decomposition and introduced them as input to an ANN for classifying
the EEG signals into two categories (healthy or epileptic). Hassan et al. [35] proposed an
automated epilepsy diagnosis system based on a tuneable-Q factor wavelet transform and
bootstrap aggregating. Finally, the general-purpose method proposed by Tsoulos et al. [36]
utilized genetic programming to create ANNs. The proposed method could infer the
ANN’s architecture and estimate the optimal number of neurons for each given problem.

3. Materials and Methods

This research studied the four machine learning methods that are analysed in the
Methods section for exploring window size’s effect on classifying epileptic short-term
EEG signals.

The well-established epileptic database from the University of Bonn was used for the
evaluation, since it is the most used database from the published databases. The Bonn
database consists of 5 groups of recordings namely Z-O-N-F-S. The Z and O datasets
consist of EEG recordings of healthy, nonepileptic participants with closed and open eyes,
respectively. The N, F, and S subsets include intracranial EEG recordings acquired from
five epileptic patients, during presurgical examination. Specifically, the N subset includes
parts of interictal recordings originating from the epileptic zone of the opposite hemisphere,
while the O subset includes parts of EEG recordings obtained from the epileptic zone. The
S subset includes 100 intracranial EEG recordings, obtained from the epileptogenic zone
during epileptic activity. The epileptogenic zone was the hippocampus and no further
patient data were provided.

For the classification task, all 5 subsets of the Bonn database were used, for a 5-class
Z-O-N-F-S problem. Each group consisted of 100 single-channel recordings with 23.6 s
duration and all recordings were used for the training and testing. Before the experiment, a
low-pass FIR filter at 40 Hz was applied to all recordings, and then the recordings were
split into datasets of different time window lengths. The examined window lengths were
1–24 s (24 s being in fact 23.6 s).

For each examined window length, a set of extracted univariate and spectral features
were calculated to create a feature vector. Specifically, the following time-domain features
were extracted: mean, median, variance. Moreover, a fast Fourier transform was employed
to transform the signal into the frequency domain and the spectrum amplitude of four EEG
bands was calculated. The EEG bands were:

• Alpha band (8–12 Hz)
• Beta band (12–25 Hz)
• Theta band (4–8 Hz)
• Delta band (1–4 Hz)

The following subsections analyse the machine learning methodologies that were
tested for the classification of the 5-class problem and the evaluation of the time window
length. Particularly, Sections 3.1–3.3 analyse the optimization techniques used to optimize
the hyperparameters of a 10-layer multilayer perceptron neural network. Section 3.4
analyses the last classification methodology, k-nearest neighbours (kNN).

3.1. The BFGS Method

The BFGS algorithm is a quasi-Newton approach utilizing a new updating formula
which has become very popular and has been subjected to numerous modifications. Quasi-
Newton methods are used to solve unconstrained optimization problems [16,37–41].

An unconstrained optimization problem can be described by using Equation (1):

min
x∈Rn

f (x) (1)
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In this formula, Rn denotes an n-dimensional Euclidean space while f : Rn → R is
continuously twice differentiable. The update formula of BFGS is defined in Equation (2)
where sk and yk are the step vectors, and g is used to denote the gradient for Equation (1).

sk
de f
= xk+1 − xk

yk = gk+1 − gk
(2)

The BFGS method is considered the best among all quasi-Newton based methods. The
updating formula for BFGS takes the form shown in Equation (3).

Bk+1 = Bk +
ykyT

k
yT

k sk
−

BksksT
k Bk

sT
k Bksk

(3)

In this formula, the Bk symbol denotes the Hessian approximation at xk, and the matrix
Bk+1 is generated by (3) to satisfy the following secant formula:

Bk+1sk = yk (4)

The above secant formula is considered an approximation of the Newton relation. The
secant can be fulfilled if sT

k yk > 0, which is called the curvature condition and ensures that
the BFGS updating matrix shown in (3) is positive definite [16]. Unconstrained optimization
problems are solved using an iterative procedure. Equation (5) defines the iterative formula
for quasi-Newton methods.

xk+1 = xk + akdk (5)

In this formula, the term ak defines the step size while dk defines the search direc-
tion. The step must be a positive number in order f (x) to be able to reduce sufficiently,
while both ak and dk must be chosen carefully for an efficient search line. The step size
can be calculated by using various formulas divided into two main categories (exact or
inexact line search). An ideal choice would be the exact line choice defined by the formula
ak = arg min( f (xk + akdk)), a > 0 but it is computationally intensive to define this value.
The reason behind this problem is that it requires a large number of evaluations for the
objective function f and its gradient g. The inexact line search has a number of formulas
proposed by different researchers, including the formulas of Armijo [42], Wolfe [43,44],
and Goldstein [45] with the first one being the easiest one to implement. The Armijo search
line formula is defined in (6).

f (xk)− f (xk + akdk) ≥ −σakgT
k dk (6)

Given s > 0, λ ∈ (0, 1), σ ∈ (0, 1) and ai = max{s, sλ, sλ2, . . . } such that k =
0, 1, 2, 3, . . . , the reduction in f should be proportional to both the step size and direc-
tional derivative gT

k dk [16].
The search directions are important for determining the f value, and the quasi-Newton

methods can be defined using the following equation.

dk = −B−1
k gk (7)

In this formula, Bk is a nonsingular symmetric approximation matrix of the Hessian
defined in (3). The initial matrix B0 is an identity matrix updated by an update formula.
When d1 is defined from the above formula and Bk is a positive definite matrix, then
dT

k = −gT
k B−1

k gk < 0, which makes dk a descent direction. Algorithm 1 describes the
iterative process of the BFGS algorithm [16].
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Algorithm 1 : The BFGS Algorithm

1: Having a starting point x0 and B0 = In. Set the values for s, β, and σ.
2: End if ‖g(xk+1)‖ < 10−6.
3: Calculate the search direction using Formula (7).
4: Calculate the difference sk = xk+1 − xk and yk + gk+1 − gk.
5: Update Bk by (3) in order to obtain Bk+1.
6: k = k + 1.
7: Go to step 2.

The current research uses the BFGS variant proposed by Powell [46]. The main
advantage of Powell’s methodology is that the step along the search direction is not
restricted by constraints having small residuals, which significantly increases efficiency,
specifically the nearly degenerate constraints.

3.2. The Multistart Method

The multistart method described in Algorithm 2 is a two-phase stochastic black-
box global optimization approach consisting of a global and a local phase. In black-box
optimization problems, no known structure can be used, and the problem can be formulated
by minimizing, for example, a continuous function f over a compact set S ⊆ Rn. Due to
the nature of stochastic problems where the outcome is random, it is particularly suitable
for black-box optimization problems. Another characteristic of these approaches is that
they require little to no assumptions about the optimization problem. On the other hand,
they can only provide a probabilistic convergence guarantee in the best-case scenario [47].

In the first phase of a two-phase method, many randomly sampled points in the feasi-
ble region are used to evaluate the function. In the second phase, a local search procedure
is applied to each sample point mentioned above, yielding various local optima. Amongst
all local optima, the best one forms the resulting estimation of the global optimum [17,47].

Algorithm 2 : The Multistart Algorithm

1: i = 0 and X∗ = .
2: Take a random sample x from S.
3: Start a deterministic local search process at x and conclude at a local minimum x∗.
4: Check if a new minimum is found.
5: x∗ /∈ X∗ then
6: i← i + 1.
7: x∗i = x∗.
8: X∗ ← X∗ ∪ {x∗i }.
9: end.
10: If ending criteria have been met, terminate the process.
11: Go to step 2.

3.3. The Modified GA Method

GAs are global optimization methods based on Charles Darwin’s theory of natural
evolution. A GA begins with a pool of candidate solutions, which are the artificial equiv-
alent of chromosomes in biological organisms. Then, these chromosomes are evolved
in an iterative process using the selection, crossover, and mutation genetic operations.
The process is continued until the termination criterion is reached, or the algorithm con-
verges to the best chromosome, which can be the optimal or a suboptimal solution of the
problem [18].

The real-coded GA proposed by Kaelo and Ali [48] can be seen in Algorithm 3. In
this algorithm, the problem is to find the global minimum of the following unconstrained
optimization problem.

minimize f (x) subject to x ∈ Ω (8)
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where f (x) : Ω ⊂ Rn → R is a continuous real-valued function and x is an n-dimensional
continuous variable vector. The term Ω denotes a box or other region which is easy to
sample. The xopt point is the global minimizer of f if fopt = f (xopt) ≤ f (x), ∀x ∈ Ω. At
each iteration of the algorithm (generation), the candidate points set S is updated which
new chromosomes (offspring) created by the reproduction process (crossover and mutation)
of the algorithm [18,48].

Algorithm 3 : The Real-Coded GA

1: Create N random points in Ω from the uniform distribution.
2: Store the points in set S.
3: iter = 0.
4: Evaluate each chromosome using its function value.
5: If the termination criteria are achieved, stop the GA.
6: Select m ≤ N parents from S.
7: Create m offspring using the selected parent chromosomes of the previous step.
8: Mutate the offspring with probability pm.
9: Remove the m worst chromosomes and replace them with the offspring.
10: Create a trial point x̃. If f (x̃) ≤ f (xh) where xh is the current worst point in S,

then replace xh with x̃.
11: iter = iter + 1.
12: Go to step 4.

The real-coded GA starts by creating the initial population in the first two lines,
followed by the initialization of the generation counter. The following step evaluates the
population. In step 5, the GA checks if the termination criteria have been achieved and
terminates the algorithm. The termination is done when | fh − f1| ≤ e or the maximum
number of iterations has been reached. The term fh denotes the function value of the most
optimal chromosome in the population, while fh denotes the function value of the least
optimal chromosome in the population. If the termination criteria have not been achieved,
the evolution process continues. In step 6, the selection of two parent chromosomes
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) for the reproduction process is done using the
tournament selection [49] mechanism. Step 7, creates the offspring using the equations
shown in (9)

x̃l = aixi + (1− ai)yi
ỹl = aiyi + (1− ai)xi

(9)

where ai ∈ [−0.5, 1.5] [50]. The mutation procedure in step 8 follows the formula depicted
in (10).

x′i =

{
xi + ∆(iter, ri − xi), t = 0
xi − ∆(iter, xi − li), t = 1

(10)

In this formula, t is a random number taking the values 0 or 1, iter is the current
generation and ∆(iter, y) = y(1− r(1−

iter
ITERMAX )) with r ∈ [0, 1] and ITERMAX being the

maximum allowed number of generations. Step 9 replaces the m worst chromosomes in
the population with the offspring. Step 10 is the local technique that creates trial points
to replace the least optimal points in the population. Using the following equation, this
technique initially selects a random point y from S and creates a trial point x̃i.

x̃i = (1 + γi)xl,i − γiyi, i = 1, . . . , n (11)

where γi ∈ [−0.5, 0.5] and xl,i is the ith component of the most optimal chromosome xl . The
technique ends by replacing the least optimal point xh in S with x̃, if f (x̃) ≤ f (xh) [18,48].

The current paper used the modifications proposed by Tsoulos [18]. These mod-
ifications include a novel stopping rule, a new mutation operator, and a local search
procedure application. This procedure is applied to the most optimal chromosome xl every
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Kls generations, with Kls being a constant that defines the frequency of the applied local
search procedure.

3.4. The K-NN Classifier

The K-NN algorithm is one of the simplest and oldest classification algorithms [15].
It has a set containing n samples Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ Rd are the
vectors containing the features and Yi ∈ {ω1, ω2, . . . , ωM} are the labels which correspond
to each class. The K-NN algorithm categorizes a new input pattern x into the class of its
nearest neighbour in the n training examples. The identification of the closest class is made
using the Euclidean distance (although other distance metrics can be used) [51,52]. The
K-NN method can be seen in Algorithm 4.

Algorithm 4 : The K-NN Algorithm

1: Classify (X, Y, x).
2: for i = 1 to n do
3: Calculate the Euclidean distance dE(Xi, x).
4: end.
5: Compute set I having the indices for the k smallest distances dE(Xi, x).
6: Return majority label for Yi where i ∈ I.

4. Results

The current research investigated the role of the window size in epilepsy EEG signal
analysis by running a series of experiments using the database from the University of
Bonn [19]. The tests were performed using a 10-fold cross-validation and are visualized in
Table 1 and Figure 1.

Figure 1. Flowchart of the proposed methodology.

All experiments were repeated 30 times with the window size ranging from 1 to
24 s. The number in each method’s cell represents the average classification accuracy of
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the test set for each window size (1–24 s). The accuracy for one fold was defined as the
number of correctly classified instances divided by the total number of instances, as seen in
Formula (12).

accuracy =
correctly classi f ied instances

total number o f instances
(12)

The accuracy was calculated by estimating the average value over all folds and then
calculating the average value over all experiment runs. The SLNN used for training in the
Broyden–Fletcher–Goldfarb–Shanno (BFGS), multistart and modified genetic algorithm
(GA) methods had ten hidden neurons, and in every iteration of the multistart approach, a
BFGS method was used to optimize the weights. Finally, the k-nearest neighbours (K-NN)
method with K = 2 was used.

In the experimental results depicted in Table 1, the bold fonts describe the time window
that achieved the highest accuracy for each methodology.

Table 1. Experimental Results expressed in classification accuracy for the four algorithms employed
regarding time windows ranging from 1 to 24 s. BFGS stands for Broyden–Fletcher–Goldfarb–Shanno
algorithm. GA stands for genetic algorithm, K-NN stands for k-nearest neighbours.

Epoch (s) BFGS Multistart GA K-NN

1 s 56.86% 57.68% 56.91% 68.9%
2 s 65.06% 65.56% 65.06% 75.14%
3 s 69.7% 69.57% 69.01% 76.66%
4 s 72.62% 70.53% 70.06% 76.99%
5 s 75.69% 73.46% 71.96% 77.89%
6 s 74.63% 76.37% 75.44% 79.53%
7 s 74.76% 75.84% 74.43% 79.1%
8 s 76.06% 75.55% 74.95% 78.41%
9 s 76.25% 77.64% 76.5% 79.88%
10 s 76.96% 77.12% 76.38% 80.05%
11 s 76.42% 79.01% 77.2% 79.08%
12 s 76.55% 78.26% 77.06% 79.84%
13 s 77.04% 78.04% 76.05% 78.56%
14 s 77.81% 78.26% 77.13% 79.01%
15 s 79.75% 78.98% 78.41% 78.68%
16 s 77.35% 80.98% 78.59% 79.52%
17 s 77.7% 78.05% 77.82% 79.92%
18 s 78.5% 79.24% 78.10% 79.92%
19 s 80.7% 79.71% 78.47% 79.49%
20 s 80.92% 81.59% 80.78% 80.00%
21 s 80.92% 81.23% 81.06% 79.25%
22 s 80.04% 80.88% 81.00% 81.17%
23 s 80.69% 80.88% 80.89% 78.88%
24 s 80.25% 80.43% 79.98% 79.04%

It is seen that the window size dramatically impacted the accuracy values since when
the window had a size of 20–21 s, the accuracy had its highest value and decreased when
the window size gradually increased or decreased. The multistart method obtained the
highest accuracy with a window size between 20 and 21 s (81.59%). Regarding the BFGS
algorithm, the highest accuracy was achieved at with 20-s and 21-s time windows (80.92%),
while the GA methodology achieved the highest accuracy when the time window was 21 s
(81.06%). Finally, the K-NN algorithm achieved its best accuracy scores with a 22-s time
window (81.17%).

Table 2 illustrates other standard evaluation measures for the K-NN algorithm, namely
the area under the ROC, the area under the PRC, and the kappa statistic. The results of this
table are in agreement with Table 1, with the 20–21-second time windows achieving the
best performances at every evaluation metric.
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Table 2. Area under the ROC, area under the PRC, and kappa statistic regarding the classification
performance of the K-NN algorithm.

Epoch (s) AOC PRC k-Stat

1 s 78.91% 48.6% 62.21%
2 s 79.89% 50.2% 68.74%
3 s 80.68% 50.1% 75.23%
4 s 86.44% 53.3% 71.95%
5 s 85.92% 56.8% 74.62%
6 s 85.45% 54.0% 76.38%
7 s 83.21% 58.1% 77.55%
8 s 87.21% 60.9% 77.19%
9 s 87.17% 61.8% 80.02%
10 s 86.57% 64.3% 78.84%
11 s 90.89% 64.2% 83.40%
12 s 90.49% 64.8% 82.32%
13 s 89.04% 68.1% 82.14%
14 s 88.88% 68.3% 82.85%
15 s 86.22% 70.4% 79.94%
16 s 85.45% 70.1% 80.15%
17 s 85.92% 73.6% 82.15%
18 s 84.70% 73.0% 84.29%
19 s 86.07% 74.7% 85.42%
20 s 92.22% 78.5% 85.49%
21 s 92.51% 76.5% 83.26%
22 s 88.70% 77.3% 82.44%
23 s 82.28% 75.7% 83.51%
24 s 88.37% 73.7% 80.00%

5. Discussion

The current article investigated the time window size’s impact on EEG signal clas-
sification for epilepsy detection. The experimental part utilized three neural networks
trained using three different algorithms (BFGS, multistart, modified GA) and the K-NN
classifier. The experiments were repeated 30 times, and the average classification accuracy
was reported.

The primary outcome from the experimental results summarized in Table 1 was that
the window size in epilepsy EEG signals significantly impacted the classification accuracy
of the compared methods. It was shown that for more accurate results, the window size
must be between 20 and 21 s. Another significant outcome was the mixed results regarding
the method which managed to get the best accuracy for each window size. There was
no clear winning method for all window sizes, but the results varied when the window
size changed.

An appropriate window length selection is crucial for machine learning methodologies
on signal data (such as EEG). Too small time windows may fail to capture each condition’s
signal characteristics. For example, a very small time window in an epilepsy methodology
may result in not being able to capture the complete seizure waveforms. On the other side,
too large time windows may capture signal properties of two different situations (such as
ictal state and interictal state), thus negatively affecting the classification performance. The
proposed study can be utilized in future methodologies that propose a classification scheme
for EEG epilepsy detection problems. Our study’s resulting optimal window length agreed
with another study proposed by Tzimourta et al. [53]. This study evaluated the optimal
window length using different classification algorithms (naive Bayes, MLP, support vector
machines, and decision trees) and found that 21-s windows achieved the best accuracy
results. Moreover, our results suggested that the 20–21-s windows achieved the best
performance. These findings agreed with Thangavel et al. [54], who classified epileptic
signals using different features and examined different window lengths, concluding that
the 20-s time window generated some of the best performance results.
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However, some limitations regarding our methodology should be mentioned. One of
them is the restricted length of the recordings, which did not allow exploring time windows
larger than 24 s. To alleviate this limitation, a future extension of this methodology that
incorporates longer EEG recordings from other publicly available databases should be
performed. Furthermore, no wavelet transformations were used for the feature extraction
step, as well as a limited number of machine learning algorithms were used (neural
networks and K-NN), limiting the ability to generalize these findings to all automatic EEG
epilepsy detection methodologies.

6. Conclusions

Epilepsy has attracted much attention from the research community because it can
affect various people ranging from very young to the elderly. It can also have a serious
economic impact on healthcare needs; it can cause premature deaths and lead to lost work
productivity. Consequently, much scientific effort has been made to propose machine
learning methodologies that perform automatic epilepsy detection from EEG signals. These
methodologies commonly perform epoching of the time signals to produce the experiment’s
training and test set. Thus, the window size in the signal decomposition is significant for
detecting subtle changes in the EEG recording. This study evaluated the optimal time
window length for four classification algorithms: three neural networks trained using the
BFGS, multi-start and modified GA methods and the K-NN approach. Time windows
from 1 to 24 s were explored and examined regarding the classification accuracy of the four
algorithms. The epoching of 20–21 s achieved the best classification performance.

Author Contributions: Conceptualization and methodology, I.T.; software, I.T. and N.A.; validation,
E.K., A.T.T. and M.G.T.; investigation, K.D.T. and A.T.T.; data curation, M.G.T. and N.G.; writing—
original draft preparation, V.C. and I.T.; writing—review and editing, V.C., A.M., I.T., E.K., K.D.T.,
M.G.T., N.A., A.T.T. and N.G.; visualization, A.T.T. and A.M.; supervision, I.T., M.G.T., A.T.T. and
N.G. All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge support for this work from the project “Immersive Virtual, Augmented
and Mixed Reality Center Of Epirus” (MIS 5047221), which is implemented under the Action “Rein-
forcement of the Research and Innovation Infrastructure”.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by Ethics Committee of University of Ioannina.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The research utilizes the database from the University of Bonn [19].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EEG electroencephalogram
K-NN k-nearest neighbours
BFGS Broyden–Fletcher–Goldfarb–Shanno
SLNN single-layer neural network
GA genetic algorithm
BCI brain–computer interface
MLP multilayer perceptron
t-f time frequency
PSD power spectrum density
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CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
LPBoost linear programming boosting
DWT discrete wavelet transform
MODWT maximal overlap discrete wavelet transform
PE permutation entropy
SVM support vector machine
CSI combined seizure index
PCA principal component analysis
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