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Abstract: Brain-computer interface (BCI) technology is a developing field of study with numerous
applications. The purpose of this paper is to discuss the use of brain signals as a direct communication
pathway to an external device. In this work, Zombie Jumper is developed, which consists of 2 brain
commands, imagining moving forward and blinking. The goal of the game is to jump over static
or moving “zombie” characters in order to complete the level. To record the raw EEG data, a Muse
2 headband is used, and the OpenViBE platform is employed to process and classify the brain
signals. The Unity engine is used to build the game, and the lab streaming layer (LSL) protocol is the
connective link between Muse 2, OpenViBE and the Unity engine for this BCI-controlled game. A
total of 37 subjects tested the game and played it at least 20 times. The average classification accuracy
was 98.74%, ranging from 97.06% to 99.72%. Finally, playing the game for longer periods of time
resulted in greater control.

Keywords: electroencephalography (EEG); brain-computer interface (BCI); BCI game;
human-computer interface (HCI) Muse 2 headband; lab streaming layer (LSL); OpenViBE; Unity

1. Introduction

A brain-computer interface (BCI) [1,2] is a specialized communication system that
enables people to interact with applications [3] by sending commands or messages without
any muscle or nerve activity. There are many fields that can benefit from the development
of BCIs, such as medical applications [4], games [5], and tourism [6]. In the medical field,
BCIs can be used for detecting and diagnosing brain or sleep disorders; in gaming, many
new applications have been developed for educational purposes or for expanding the
gaming experience for people with movement disabilities. Lastly, tourism can benefit from
controlling augmented or virtual touristic environments.

Depending on the placement of the sensors, BCI systems are divided into two cat-
egories: invasive and non-invasive [7,8]. If the electrodes used for acquiring the brain
signals are placed as an array within the skull, then the system is categorized as an invasive
BCI. Otherwise, if the electrodes are placed on the scalp, then the system is non-invasive.
The advantage of the first category is that the signal has better quality, with reduced ar-
tifacts and noise. Because neurosurgery is a dangerous and costly procedure, patients
with major neural disabilities such as blindness or paralysis are the primary targets of
invasive BCI. There are several advantages of the non-invasive category, such as portability,
low cost and the safety of the procedure. The most common non-invasive technique is
electroencephalography (EEG). By definition, an EEG provides a recording of the electrical
activity of the brain from the surface of the scalp. EEG devices can be either commercial
or clinical. Clinical devices usually have 64 or 32 electrodes, and they are used in medical
applications [9]. Commercial devices are cheaper and more accessible, and the number
of electrodes on those devices varies from 1 to 64. The following Table 1 presents a list of
commercial EEG headsets from the literature.
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Table 1. Commercially available non-invasive EEG devices.

Device EEG Electrodes Sampling Rate Price

Muse 2 4 (AF7, AF8, TP9, TP10) 256 Hz 250$
Neurosky MindWave 1 (FP1) 512 Hz 100€
Emotiv Insight 5 (AF3, AF4, T7, T8) 128 Hz 499$
Unicorn Hybrid Black 8 (Fz, C3, Cz, C4, Pz, PO7, Oz, PO8) 250 Hz 990$
Emotiv EPOC+ 14 (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) 128 Hz 849$

The EEG devices that are presented in the table above have been employed by re-
searchers to control mechatronic devices. Emotiv Epoc+ was used by Aguiar et al. [10] to
control a robotic arm. Emotiv Insight was employed by Espiritu et al. [11] to command a
wheelchair with brain commands. Neurosky MindWave was used by Katona et al. [12]
to control a mobile robot. Lastly, Unicorn Hybrid Black was employed by Belkacem and
Lakas [13] to achieve robot-drone interactions.

A BCI system consists of 5 major components [14], as is presented in Figure 1:

1. Signal acquisition;
2. Signal processing;
3. Feature extraction;
4. Feature translation;
5. Device output.

Brain activity [15] is measured and recorded by signal acquisition, and the raw data
are de-noised by signal pre-processing. The next step is signal processing for filtering the
signal in order to extract several features for the classification process. Then the classifier
translates the brain signals into application commands. Many BCI applications provide
feedback and re-training to the user.

Figure 1. Major components of a BCI system.

In this work, a BCI-controlled game is developed. The name of the 2D game is Zombie
Jumper, and the goal is to overcome obstacles using two mental commands. The Unity
engine is used to build the game, and OpenViBE is used to process and classify the EEG
signals. OpenViBE is also used for real-time classification, and through a lab streaming
layer (LSL) stream, it sends data to the game. A Muse 2 headband is used to acquire EEG
data from the 37 participants that tested the game.

2. Related Work

Several papers were published in the last few years that intend to connect BCIs with
video games. The main target of these studies is to develop games that can be played by
brain signal commands. In the following papers from the literature, the main technique that
was used is attention and meditation levels to control the BCI and play the games. In the
works of [16–18], the authors chose Neurosky devices with one sensor to acquire the EEG
data, while [19–21] chose headsets with more EEG sensors, including the Emotiv Insight
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headset with 5 sensors, the EMOTIV EPOC+ headset with 14 sensors, and the Muse 2
headband with 4 sensors, respectively.

Wu et al. [16] developed an android racing BCI game controlled by Mindset, a
commercially available EEG headset. NeuroSky Mindset is an EEG headband with only
1 sensor, and it is mostly used for attention-meditation values. The employed racing game
is controlled by the user’s neural mind states. The user can alter the speed of the car and
the map of the game with his attention and meditation level. To finish the game, the user
must complete 2 map circles, and the map can dynamically change depending on the mean
meditation level. For a mean meditation between 0 and 35, the most difficult map is loaded;
for mean meditation values between 36 and 70, the intermediate one is loaded, and for 71 to
100, the easiest one is loaded. If the mean meditation level is high, then the user is nervous.
The car’s speed is proportional to the attention level, so the higher the attention level of the
player, the faster he can finish the game. For the testing phase, 5 subjects played the game;
1 of them managed to load the difficult map, 3 managed to load the intermediate map, and
1 loaded the easiest map. Their mean meditation scores were 27, 39, 47, 55, and 79.

Vasiljevic et al. [17] designed the Mental War game controlled by the NeuroSky
MindWave headset, which has 1 electrode. The developed game is a tug-of-war game based
on the user’s attention level. The game has 3 different modes: single player, competitive
and collaborative. In single-player mode, the user competes against the computer, and there
are 3 difficulty levels: easy, medium and hard. In competitive mode, which is multiplayer,
users battle against each other, and the player with the greater attention level will pull
the others to his side. In collaborative mode, users can team up and battle against the
computer or a different team of players. The team’s attention level is the mean of the sum
of each individual’s attention level. Therefore, if a team member has a low attention score,
the others should score very high for their team to win. In the testing phase, 24 subjects
participated in several scenarios to improve and evaluate the game. Attention levels and the
duration of the game were the two evaluation metrics. The average attention score for the
single-player mode was 53.49%, while for the multiplayer (competitive and collaborative)
modes, the average score was 52.42%. The average duration of the single player mode was
90.99 s, and for the multiplayer mode, the average duration was 56.22 s.

Rosca et al. [19] developed a game called Mental Pool Game powered by the Unity
engine and controlled by an Emotiv Insight headset with 5 EEG sensors. In this work,
neutral state and attention level are used for playing the game. The user can control the
speed and strength of a white ball with his attention level. Practically, these in-game
features are proportional to the attention of the player. Moreover, they used the 3-axis
gyroscope of the Emotiv headset to update the white ball’s position on the table in order to
match the player’s position. To test the game, 3 healthy participants played the Mental Pool
Game. Before the actual experiment, the subjects trained offline for the neutral and attention
states. For the attention level, the subjects were instructed to visualize the movement of a
cube. The participants played 1 round of each game until the exhaustion of the balls on the
pool table.

Wang et al. [18] designed a parkour game based on EEG and electrooculograms
(EOG). MindWave Mobile was employed for this BCI application. This headset consists
of an earphone, an ear clip, and a sensor arm. The game has four levels, and the in-game
avatar can run, jump to avoid obstacles, and collect coins. The avatar has three lives with
which to complete one level, and the game rewards the user every time he jumps over
an obstacle, collects coins, and finishes a level. More specifically, the attention level is
associated with the avatar’s speed, meaning that an increase in attention level leads to an
increase in the avatar’s speed. Additionally, blinking corresponds to in-game jumping.
To test their application, 5 subjects played the game. To evaluate their experiment, they
used two different algorithms and the following metrics: maximum meditation degree,
maximum attention degree, and the time to pass the first stage. The average time to pass
the first stage for the first algorithm was 34.6 s, and for the second one, it was 30.2 s.
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Alchalabi et al. [20] developed a serious game to improve the focusing ability of
people that suffer from ADHD. To acquire the EEG data, they used the EMOTIV EPOC+
headset, which has 14 EEG channels. The designed 3D game has two different commands,
push and neutral state, and the objective of the game is to collect all the available cubes.
The push command is related to the attention level, while the neutral command is related
to the meditation level of the user. When the user is focused, the avatar is moving forward,
and when the user relaxes, the avatar stops moving. Additionally, the user can rotate the
avatar using the gyroscope from the Emotiv headset. Four healthy subjects participated
in the experiment. In the beginning, they were trained for the 2 mental states, and after
completing the training phase, they were introduced to the game. They played the game
with 2 protocols: mental commands and a keyboard. It was observed that users had greater
engagement and higher attention levels when playing with the mental commands.

3. Materials and Methods
3.1. Materials

The goal of this work is to develop a low-cost BCI-controlled game in order to train
users to adapt to BCI environments. In the following subsection, the hardware and software
used are presented.

3.1.1. EEG Headset

To acquire the raw EEG data, the Muse 2 [22] headband (Figure 2) is used, which is
a 4-electrode commercial EEG headset. The 4 electrodes are placed in the frontal cortex,
two on the left (TP9 and AF7) and two on the right (AF8 and TP10). Muse 2 is a portable,
flexible and low-cost EEG headband, and it connects with the computer via Bluetooth.

Figure 2. Muse 2 headband with the corresponding electrodes.

3.1.2. BlueMuse

BlueMuse [23] is a streaming app for the Muse 2 headband. The connection between
the computer and the EEG device is made via Bluetooth. It has many features that make
it easier for the user, such as the automatic detection of available EEGs that are within a
distance recognized by Bluetooth. Additionally, the application supports the simultaneous
flow of data from several Muses, which facilitates the creation of various applications
that need two or more devices at the same time. Data streaming is achieved via the lab
streaming layer (LSL) protocol.

3.1.3. Lab Streaming Layer

LSL [24] is an open-source system used to stream, receive, synchronize, and record
time series data streams acquired from numerous acquisition devices available in the
network. The LSL protocol provides secure data transmission due to the inheritance of
the TCP protocol. It reduces complexity over cross-platform application connectivity and
minimizes data loss. For this work, BlueMuse connects with the Muse 2 headband via
Bluetooth and automatically creates an LSL stream for transmitting the raw EEG data.
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The LSL stream is connected to OpenViBE’s acquisition server in order to record and then
process and classify the brain signals.

3.1.4. OpenViBE

The BCI-controlled game is employed on the OpenViBE platform, which is an open-
source software for recording, processing and classifying EEG data either offline or in
real-time. OpenViBE has several integrated algorithms, and it also provides drivers for BCI
headsets to connect with other applications and engines.

3.2. Methods

In the following subsection, the methods of the proposed BCI system are presented.
In Figure 3, the flowchart diagram for the offline and the online process is shown.

Figure 3. Flowchart diagram of the proposed system. The left side presents the offline processing
that trains the classifier. The right side presents the online processing that uses the trained classifier
to translate the mental commands into in-game movement.

3.2.1. Offline Processing

For recording raw EEG data, OpenViBE’s acquisition server was employed. A simple
scenario was created that obtains the raw EEG data and stores them in a CSV file, excluding
2 channels from the Muse 2 headband (timestamp and AUX). When the recording phase
was completed, a new scenario was designed in order to process the data and extract
features to classify them. The brain signal was imported, and a pre-filter was applied. This
filter was a Chebyshev bandpass filter between 8 and 30 Hz. This was used to cut noise,
artifacts and low-frequency bands such as delta and theta waves. After the Chebyshev
filter was applied, the signal was epoched in 1 s time windows with no overlap. The time
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window for this BCI application had to be short so the user could control the game avatar
accurately. The final time window was decided through a trial-and-error process. Fast
Fourier transform (FFT) was used for spectral analysis. Then, the EEG spectrum was split
into 3 bands:

1. Alpha waves 8–12 Hz.
2. Beta low waves 12–20 Hz.
3. Beta high waves 20–30 Hz.

Finally, the average spectral amplitude per band was calculated and used as an input
for the classifier. The offline processing scenario that is described is presented in Figure 4.

Figure 4. Offline processing scenario to train the classifier.

3.2.2. Classification

To classify the data, two algorithms were tested, linear discriminant analysis (LDA)
and multi-layer perceptron (MLP). These algorithms are already integrated by OpenViBE.
The obtained features from the processing phase were used as input to the classifiers.

LDA [25] is a common technique used for supervised classification problems. It can
be used to reduce dimensions, visualize data and interpret the importance of the given
features. LDA finds the projection hyperplane in order to minimize the interclass variance
and maximize the distance of the projected means of the classes. Basically, the classifier
finds a linear combination of features that can group data or separate them into two or
more classes.

MLP [25,26] is a neural network. It has three different layers: the input layer, the
hidden layer and the output layer. The input signal is sent to the input layer to be processed.
The computational power of this algorithm derives from the hidden layers. They are located
between the input and output layers, and their number varies depending on the problem.
The neurons in this classification algorithm are trained with the back-propagation learning
algorithm. The output layer is responsible for predicting and classifying data. Multi-layer
perceptrons are more commonly used in pattern classification.

In Table 2 the classification accuracy and the confusion matrix of the offline classifica-
tion process for the subjects that participated in the experiment are presented. The average
classification accuracy for LDA is 98.75% while for Multi-layer Perceptron is 98.74%.
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Table 2. Offline classification results for LDA and multi-layer perceptron.

Subjects LDA—Blinking
LDA—Eyes

Opened LDA—Overall
Perceptron—

Blinking

Perceptron—
Eyes

Opened

Perceptron—
Overall

1 95.20% 100% 97.58% 97.20% 100% 98.62%
2 99% 0% 99.36% 98.6% 100% 99.14%
3 99% 100% 99.36% 97.6% 100% 98.79%
4 97.2% 100% 98.62% 98.3% 100% 99.13%
5 98.3% 99.3% 98.79% 96.9% 100% 98.44%
6 98.3% 100% 99.3% 97.6% 100% 98.79%
7 99% 100% 99.48% 97.9% 100% 98.96%
8 99% 100% 99.48% 97.2% 100% 98.62%
9 98.6% 100% 99.31% 97.2% 100% 98.62%

10 98.6% 100% 99.31% 97.6% 100% 98.79%
11 98.6% 100% 99.31% 97.2% 100% 98.62%
12 99% 100% 99.48% 96.9% 100% 98.44%
13 97.9% 100% 98.96% 97.6% 100% 98.79%
14 97.9% 100% 98.96% 96.9% 100% 98.44%
15 99% 100% 99.48% 99.7% 100% 99.72%
16 98.3% 100% 99.13% 96.6% 100% 98.27%
17 99% 100% 99.48% 97.2% 100% 98.62%
18 98.3% 100% 99.13% 97.2% 100% 98.62%
19 97.6% 99.7% 98.62% 96.9% 100% 98.44%
20 98.3% 99.3% 98.79% 97.2% 100% 98.62%
21 97.9% 100% 98.96% 97.2% 100% 98.62%
22 100% 100% 100% 97.6% 100% 98.79%
23 99% 100% 99.48% 95.2% 100% 97.06%
24 89.7% 100% 94.82% 97.6% 100% 98.79%
25 99% 100% 99.48% 99.3% 100% 99.65%
26 97.9% 100% 98.96% 99.3% 100% 99.65%
27 98.6% 100% 99.31% 97.6% 100% 98.79%
28 96.6% 100% 98.27% 97.6% 100% 98.79%
29 99% 100% 99.48% 97.6% 100% 98.79%
30 98.6% 100% 99.31% 97.6% 100% 98.79%
31 92.8% 100% 96.37% 97.2% 100% 98.62%
32 99% 100% 99.48% 97.2% 100% 98.62%
33 99% 100% 99.48% 97.9% 100% 98.96%
34 98.6% 100% 99.31% 97.9% 100% 98.96%
35 89.7% 100% 94.82% 97.6% 100% 98.79%
36 95.2% 100% 97.58% 97.2% 100% 98.62%
37 95.9% 98.6% 97.06% 97.9% 100% 98.96%

3.2.3. Online Scenario

After the completion of the offline processing and the training of the classification
algorithm, a new scenario was created for the online testing. The parameters of this scenario
were the same as in the previous scenario except for the time segmentation, which was not
required. As an input, the acquisition client was used for importing the real-time signal
obtained by the Muse 2 headband. The classified instances were transported through
an LSL stream to be used for the BCI application. The real-time classification scenario is
presented in Figure 5.
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Figure 5. Real-time classification scenario.

4. Game Design

The developed 2D game was designed in the Unity platform [27], which is a popular
developing engine used for game development. Unity can produce BCI applications when
the appropriate libraries and tools are imported. For this work, the liblsl library was used
to connect Unity with the BCI. More specifically, LSL creates a live stream that allows
the application to receive data from the EEG device. The data transmitted through this
LSL stream are the classification results from OpenViBE’s real-time classification scenario.
Basically, these data were translated into in-game commands, replacing the standard Unity
input commands (keyboard input). Appropriate C-sharp scripts handled an LSL stream
and read the transmitted data sample by sample.

In the designed game, the player must control the avatar accurately in order to over-
come obstacles, monsters and ghosts and reach the end of the level. There are two levels: in
the first one, the obstacles are static, and only the avatar is moving toward them, while in
the second, both the avatar and the obstacles are moving. In order to make the game more
competitive and fun, a scoreboard on the top left of the screen was employed. The score
was updated based on the distance that the player moved and the number of obstacles that
were successfully overcome. There were 2 available commands: move forward and jump.
In order to move forward, the user has to imagine forward movement and look ahead. For
jumping, the user has to perform a hard intentional blink. The game interface is presented
in the following Figure 6.
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Figure 6. Snapshot from BCI-controlled game.

5. Results and Discussion
5.1. Dataset

To evaluate the BCI experiment, 37 subjects, 20 males and 17 females with varying
ages between 19 and 61, played the game. All participants were healthy with normal
or corrected vision and signed a formal consent in order to use their recordings for this
research. An experienced researcher instructed them to sit in a chair and minimize their
movements to perform 2 separate EEG recordings. For the first recording, subjects had to
perform intentional hard blinks every 2 s for 5 min. For the second recording, subjects were
instructed to look ahead and imagine moving forward for 5 min. During the recording
phase, participants were isolated in a quiet room in order to minimize external noise. All
74 recordings were included in the offline processing without excluding data with a total of
580 feature vectors as input to the classifier for every subject. The average classification
accuracy was 98.74%, ranging from 97.06% to 99.72% (Table 2).

5.2. Game Testing

Moving on to online testing, players were introduced to the BCI game and Unity
environment because they had zero experience in BCI experiments. With the aid of a
researcher, subjects became familiar with the equipment and the whole procedure. After
the training phase, they had to play level 1 of the game strictly 20 times in order to evaluate
their performance. The game score was chosen as an evaluation metric, which increased
proportionally to the distance covered and the obstacles that the player overcame. The
20 scores were split into 2 sets of 10; then, the average score of these 2 sets was calculated to
examine how the user adapts to the game. To make the whole experiment more competitive
and fun, subjects were informed that the 18 best players would advance to test level 2 of
the game.

Table 3 presents the level 1 game scores from the 37 subjects. The maximum score for
level 1 is 100. The average overall score for all subjects is 52.70. The best performance is
66.85 by Sub17, while the worst one is 25 by Sub22. 18 subjects were able to finish level
1 at least 1 time; 5 of them managed to finish it twice, and only Sub17, the player with
the best overall score, finished it 3 times. It is observed that 78% of the players (29 out of
37) improved their performance in the second set of 10 tries. This observation indicates
that most of the players adapted to the BCI-controlled game and became better after they
familiarized themselves with it. The main difficulty for some players was synchronizing
the jump command because of the 1-second delay of the commands due to the 1-second
time windows chosen for the classifier.
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Table 3. Level 1 game scores.

Subjects Average Score 1 Average Score 2 Improvement Average Overall
Score

Sub1 45.60 53.70 8.10% 49.65
Sub2 51.90 63.00 11.10% 57.45
Sub3 40.50 67.50 27.00% 54.00
Sub4 46.80 63.30 16.50% 55.05
Sub5 47.70 51.80 4.10% 49.75
Sub6 53.70 51.40 −2.30% 52.55
Sub7 41.90 56.60 14.70% 49.25
Sub8 43.60 46.60 3.00% 45.10
Sub9 35.80 63.30 27.50% 49.55
Sub10 48.90 47.10 −1.80% 48.00
Sub11 44.50 37.20 −7.30% 40.85
Sub12 32.60 48.00 15.40% 40.30
Sub13 46.75 48.90 2.15% 47.80
Sub14 35.60 46.40 10.80% 41.00
Sub15 66.20 60.90 −5.30% 63.55
Sub16 57.30 64.80 7.50% 61.05
Sub17 64.20 69.50 5.30% 66.85
Sub18 56.60 59.70 3.10% 58.15
Sub19 38.90 57.30 18.40% 48.10
Sub20 50.80 60.10 9.30% 55.45
Sub21 30.20 40.60 10.40% 35.40
Sub22 27.40 22.60 −4.80% 25.00
Sub23 66.80 50.80 −16.00% 58.80
Sub24 57.60 64.30 6.70% 60.95
Sub25 63.50 62.20 −1.30% 62.85
Sub26 34.00 41.70 7.70% 37.85
Sub27 41.00 53.10 12.10% 47.05
Sub28 51.20 54.10 2.90% 52.65
Sub29 49.00 65.00 16.00% 57.00
Sub30 62.90 60.70 −2.20% 61.80
Sub31 55.90 63.80 7.90% 59.85
Sub32 59.60 64.30 4.70% 61.95
Sub33 52.20 64.30 12.10% 58.25
Sub34 64.30 68.50 4.20% 66.40
Sub35 53.10 64.60 11.50% 58.85
Sub36 53.80 66.10 12.30% 59.85
Sub37 28.20 59.20 31.00% 43.7

Table 4 presents the level 2 game scores from the 18 best subjects qualified from level 1.
The maximum score for level 2 is 150. The average overall score for all subjects is 70.35.
The highest score achieved in this level is 87.9 by Sub32. The worst score is 51.05 by Sub20.
A total of 8 subjects managed to finish the level at least 1 time, 4 subjects finished it twice,
and 1 subject finished it 3 times. The results show that 55.55% of the players (10 out of
18) adapted to this level’s difficulty and improved their performance in the second set of
tries. Level 2 is designed with increased difficulty compared to level 1 in order to test user
adaptation in a more difficult BCI scenario. The results confirm that level 2 is indeed more
challenging because the 18 players who advanced from level 1 have an average decrease of
13.33% in their level 2 scores.

A paired samples t-test was conducted to determine the effect of adaptation between
the 2 sets of 10 tries for each level. The results for level 1 indicate a significant difference
between average score 1 (M = 48.66, SD = 11.04) and average score 2 ((M = 56.29, SD = 10.15),
(t(37) = 0.583, p < 0.01)). The results for level 2 indicate a not significant difference between
average score 1 (M = 68.85; SD = 12.11) and average score 2 ((M = 71.85, SD = 11.65),
(t(18) = 0.265, p = 0.287)).
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Table 4. Level 2 game score results.

Subjects Average Score 1 Average Score 2 Improvement Average Overall
Score

Sub2 65.20 77.40 8.13% 71.30
Sub4 61.60 78.40 11.20% 70.00
Sub15 62.60 83.30 13.8% 72.95
Sub16 96.60 71.20 −16.93% 83.90
Sub17 68.40 73.20 3.20% 70.80
Sub18 67.10 55.50 −7.73% 61.30
Sub20 43.20 58.90 10.46% 51.05
Sub23 61.30 65.20 2.60% 63.25
Sub24 82.10 84.30 1.46% 83.20
Sub25 84.45 78.55 −3.93% 81.50
Sub29 73.20 70.00 −2.13% 71.60
Sub30 77.90 58.10 −13.20% 68.00
Sub31 70.20 64.20 −4.00% 67.20
Sub32 72.00 103.80 21.20% 87.90
Sub33 51.40 61.10 6.46% 56.25
Sub34 61.20 74.30 8.73% 67.75
Sub35 69.40 67.80 −1.06% 68.60
Sub36 71.50 68.10 −2.26% 69.80

A comparative study between this work and other papers from the literature is pre-
sented in the following Table 5. The majority of the papers designed a BCI-controlled game
with 2 mental commands using a commercially available EEG headset.

Table 5. Comparative study.

Authors Subjects EEG Device Mental
Commands Reps per Subj Evaluation Metrics

Wu et al. [16] 5 NeuroSky Mindset 2 1 Avg mean meditation (49.4)

Vasiljevic et al. [17] 24 NeuroSky MindWave 1 - Avg attention single player (53.49);
avg attention multiplayer (52.42)

Rosca et al. [19] 3 Emotiv Insight 2 1 Not presented

Wang et al. [18] 5 NeuroSky MindWave
Mobile

2 1

Avg maximum attention 1 (73.6)
Avg maximum attention 2 (76.4)
Avg maximum meditation 1 (51)
Avg maximum meditation 2 (47.4)
Game duration 1 (34.6 s)
Game duration 2 (30.2 s)

Alchalabi et al. [20] 4 Emotiv Epoc+ 2 2

Avg focus (0.38), Avg stress (0.49)
Avg relaxation (0.32)
Avg excitement (0.25)
Avg engagement (0.65)

This work 37 Muse 2 Headband 2 20
Classification accuracy (98.75%)
Game score 1 (52.70/100)
Game score 2 (70.35/150)

Wu et al. [16], Vasiljevic et al. [17], and Wang et al. [18] used the NeuroSky headset,
which has 1 electrode, to acquire the EEG signals. Rosca et al. [19] and Alchalabi et al. [20]
used Emotiv headsets with 5 and 14 electrodes, respectively. In this experiment, the Muse 2
headband was chosen, which is a 4-electrode EEG device rarely studied in the literature.

According to the majority of the papers in the literature, the subjects played the game
only once, except Alchalabi et al. [20], where the subjects played the game two times, and
Vasiljevic et al. [17], where repetitions per subject were not mentioned. In this work, user
adaptation and improvement are the main focus; thus, subjects played the game 20 times
(in 2 sets of 10) in order to measure their improvement.

Wu et al. [16] calculated the mean meditation of the players, and depending on the
value, the difficulty of the game changes. Rosca et al. [19] did not present any evaluation
metrics for the mental pool game they designed. The evaluation metrics from the works
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of Vasiljevic et al. [17] and Wang et al. [18] mainly focused on the game duration and on
attention-meditation level. Alchalabi et al. [20] used several metrics for their game, such
as focus, stress, relaxation, interest, excitement and engagement, in order to help ADHD
patients. In this work, a more thorough approach is employed, as the game is tested on
37 subjects, while in other studies, the average number of subjects is 8.2. Additionally,
user adaptation and improvement are taken into consideration as a user evaluation metric.
Lastly, classification accuracy is presented as an offline metric, and the game score is
presented as an online evaluation metric.

6. Conclusions

In this paper, Zombie Jumper was developed, which is a BCI-controlled game. The
game consists of two commands, moving forward and jumping. To record the raw EEG
data, a Muse 2 headband was used. The OpenViBE platform was employed to process
and classify the brain signals, and the Unity engine was used to build the game. Lastly,
in order to make the game BCI controlled, the LSL protocol was used as the connective
link. To evaluate the experiment, 37 subjects tested the game. They played the first level 20
times, and the best 18 of them proceeded to the next level. It was observed that most of
the participants adapted to the BCI game, significantly improving their performance while
playing the game. All subjects were interviewed after their session and stated that they
enjoyed Zombie Jumper.

For the classification process, two algorithms were tested, MLP and LDA. The accuracy
of MLP was 98.74%, and this value was 98.75% for LDA. One of the goals of this work was
to examine user adaptation and improvement. The results showed that users gradually
improved their performance after each repetition. Level 1 average improvement was 7.63%,
while for level 2, the average improvement was 2%. Lastly, the overall average level 1 score
was 52.70, while the overall average level 2 score was 70.35.

In the future, the goal is to extend Zombie Jumper to be completely controlled by BCI.
More difficult levels will be developed, and multiple characters will be added. Further-
more, the goal is to increase the number of commands allowing the character to perform
extra moves. The BCI application in this study was based on a 2D game. Further re-
search will be focused on the use of BCI in various research areas, such as the control
of virtual or augmented environments, and commanding autonomous vehicles, such as
electrical wheelchairs.
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Abbreviations
The following abbreviations are used in this manuscript:

BCI Brain–computer interface
HCI Human–computer interface
EEG Electroencephalography
EOG Electrooculography
LSL Lab streaming layer
FFT Fast Fourier transform
LDA Linear discriminant analysis
MLP Multi-layer perceptron
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