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ABSTRACT Epilepsy is the only neurological condition for which electroencephalography (EEG) is the
primary diagnostic and important prognostic clinical tool. However, the manual inspection of EEG signals
is a time-consuming procedure for neurologists. Thus, intense research has been made on creating machine
learning methodologies for automated epilepsy detection. Also, many research or medical facilities have
published databases of epileptic EEG signals to accommodate this research effort. The vast number of
studies concerning epilepsy detectionwith EEGmakes this systematic review necessary. It presents a detailed
evaluation of the signal processing and classification methodologies employed on the different databases and
provides valuable insights for future work. 190 studies were included in this systematic review according
to the PRISMA guidelines, acquired from a systematic literature search in PubMed, Scopus, ScienceDirect
and IEEE Xplore on 1st May 2021. Studies were examined based on the Signal Transformation technique,
classification methodology and database for evaluation. Along with other findings, the increasing tendency
to employ Convolutional Neural Networks that use a combination of Time-Frequency decomposition
methodology images is noticed.

INDEX TERMS Database, detection, EEG, epilepsy, machine learning, signal transformation, systematic
review.

I. INTRODUCTION
Epilepsy is a concerning neurological dysfunction as it affects
more than 70 million people worldwide according to the
World Health Organization [1] and is caused by abnormal
electrical discharges of the cortical neurons that are called
seizures [2]. Usually, anti-epileptic drugs are prescribed to
epileptic patients, which reduce or eliminate the seizure
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onset, after its initial diagnosis. Althoughmany imaging tools
have been used for the detection of epilepsy, like Magnetic
Resonance Imaging (MRI), Functional-MRI, PET-scan and
others, electroencephalogram (EEG) is recognized to be the
main diagnostic tool for the detection of epileptic seizures,
because the epileptiform discharges can be observed on an
EEG recording and distinguished from the normal neural
activity. However, EEG detection requires well-trained and
experienced medical personnel. The clinical presentation of
a person suffering from seizures is usually typical; however,
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a differential diagnosis is often a challenge for neurologists,
in order to avoid misdiagnosis and ineffective treatment
(e.g. in cases of narcolepsy).

Prolonged timeseries of EEG data (sometimes lasting sev-
eral hours) may need to be examined from an experienced
neurologist for the visual detection of epileptic waveforms,
being a laborious and time-consuming endeavor. Thus, the
complexity of seizures and the significant size of the popula-
tion suffering from epilepsy drives research efforts to contin-
uously develop new applications for the automatic detection
of seizures, to assist the work of physicians [3]. Research
teams around the world have applied and developed sig-
nal processing techniques and machine learning algorithms,
attempting to study and detect abnormal spikes, spike waves
and spike-wave complexes in the interictal EEG recordings
[4]. In the process, research has expanded to detect the early
signs of seizure onset to predict an impending episode [5].
With the optimization of Time-Frequency (TF) analysis tech-
niques and the advent of Deep Learning, the interest of the
scientific community in the automatic diagnosis of epilepsy
has increased dramatically [6].

Although research efforts on automatic epilepsy detec-
tion with EEG have been published since the 80’s decade,
there is an exponential growth of the number of published
papers in the last decade. The majority of these studies
acquire a collection of EEG recordings of subjects with
epilepsy and healthy subjects and propose amethodology that
employs different signal processing and feature extraction
techniques along with traditional Machine Learning algo-
rithms or elaborate new ones, trying to train a system that
automatically classifies an EEG time window as epileptic
or not. Research teams focusing on processing, algorithmic
or computational issues, found it difficult to contribute to
this field in isolation, since clinical recordings, thus cooper-
ation with a medical organization, are required. As a result,
multiple epilepsy EEG databases have been published online
to assist in the development of automatic seizure detection
protocols. Thus, most experimental studies usually rely on
published databases rather than performing their own data
acquisitions.

The vast number of existing studies in this area, renders the
proposition of an unconventional methodology difficult as it
requires extensive literature exploration. Also, the selection
of the proper published DB or combination of databases for
the evaluation of the methodology is of crucial importance for
the robustness of the research. So, there is eminent need of a
systematic review that incorporates all the latest advances and
methods of automated EEG epilepsy detection. Such a review
is useful to researchers that work on proposing novel ideas in
this area.

This systematic review of the literature focuses on the
study ofmethodologies that have been proposed during recent
years for the automatic detection of seizures as well as the
grouping and analysis of the respective EEG databases. Since
the EEG is the main tool for detecting abnormal cortical
patterns of neural activity in epileptic seizures, it is only

reasonable that there are thousands of published studies that
analyze the EEG in epilepsy, and the analysis of all these
studies goes beyond the scope of this review. Therefore, the
systematic research is focused on recent bibliographic data,
of the last 5 years. The purpose of this study is to summarize
the EEG-based epilepsy detection research that has taken
place over the last 5 years and to provide a useful guideline
for future researchers about the selection of the database (DB)
and the proposition of the detection pipeline.

II. MATERIALS AND METHODS
This section describes the methodology that was applied
for the study selection, the screening process, the eligibility
evaluation, and finally the process for the analysis of the
included studies. Every step of this methodology follows in
detail the provisions of the PRISMA protocol. Details of
the protocol for this systematic review were registered on
PROSPERO and can be accessed via the PROSPERO ID that
is CRD42022365313.

The search was limited to explore recent studies that focus
exclusively on machine learning methodologies for auto-
mated epilepsy detection of EEG recordings from published
databases. The protocol for the systematic search of bib-
liographic records follows the guidelines of the PRISMA
report [7]. The literature review is carried out collecting
evidence from the most well-known and comprehensive elec-
tronic libraries of scientific articles: Elsevier’s Scopus, IEEE
Xplore, Elsevier’s ScienceDirect and MEDLINE PubMed.
For the literature review, studies containing the keywords
‘‘EEG’’ and ‘‘epilepsy’’ or ‘‘seizure’’ and ‘‘detection’’ in the
title or the summary or the keywords of the article were
searched, while excluding studies that included the keywords
‘‘animal’’ or ‘‘mouse’’ or ‘‘mice’’ in their title or summary
or keywords. The research and retrieval of the results was
carried out on the 1st of May 2022, aiming to examine
studies that focus on the detection of seizures with machine
learning algorithms. In total, 3975 records were found from
all 4 search engines. Using the built-in engine search tools,
1006 conference papers or posters were removed. From
the 2969 records left, 1454 duplicates were found and dis-
posed, using the Rayyan software. 10 more publications
were excluded as being errata/corrigenda. Next, by using
the Rayyan capabilities for multiple independent reviewers,
3 independent reviewers performed the appropriateness eval-
uation of the 1505 records. 1272 papers were excluded (see
exclusion criteria below), as well as 43 theoretical studies
such as systematic reviews, books and book chapters of
nonexperimental studies. Finally, the 190 papers left (which
were published during the last 5 years) were included in this
review.

The final goal is to select studies that apply machine learn-
ing algorithms to EEG records, in order to detect seizures.
So, in the final stage, and based on the criteria applied, the
following categories of experimental studies are detected and
removed:
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1. Studies that study epilepsy in animals and were not
excluded from the query in the first research (rats, pigs,
dogs, sheep, mammals)

2. Studies that study epilepsy at a microscopic level
(chromosomes/genes/proteins)

3. Studies that do not analyze merely EEG data
(e.g. EEG, TMS-EEG, MEG, Positron emission
tomography, MRI/CT scan, Electromyography, video-
EEG)

4. Studies that study epilepsy as an association with other
diseases or neurological conditions (e.g. encephalitis,
schizophrenia, dementia, Autism Spectrum Disorder,
brain disorders, trauma, bleeding, tumors, multiple
sclerosis, psychogenic non epileptic seizures, heart
conditions etc.)

5. Pharmacological studies that study the effect of
antiepileptic drugs on EEG

6. Surgical treatment of epileptic seizures studies
7. Studies that study the implementation of devices and

systems for the detection of seizures
8. Studies for seizure prediction
9. Case studies

10. Epilepsy studies on newborns and children
11. Studies that do not apply machine learning algo-

rithms to EEG data (Socio-cultural aspects of epilepsy,
differences between types of epilepsy, therapeutic
approaches, keto diet, neurostimulation, quality of life
and behavior-psychology assessment studies)

12. EEG analysis studies not in resting state (patients in a
coma, hyperventilation, visual stimulus, sleep studies)

13. Studies that study the removal of noise/interferences
from EEG

14. Inaccessible studies (invalid Digital Object Identifier,
inability to find and/or obtain the study)

15. High Frequency Oscillations (HFO) analysis studies
16. Patient specific for seizure detection studies
17. Studies for source localization of seizures without per-

forming detection
18. Studies on non-real clinical data (Surrogate/synthetic

data)
19. Studies for EEG montage or sampling frequency in

epilepsy
20. Studies for neuron connectivity in epilepsy
21. Studies that don’t propose a certain methodology but

focus on the comparison of existing algorithms

Particularly, the exact procedure was as follows. Initially,
for each study, Title, Abstract, Methodology (and if needed,
Discussion) were read by 3 independent researchers to clar-
ify the objective and the methodology of the paper. If the
study applied to one or more of the aforementioned criteria,
the reviewer marked it as excluded in the Rayyan platform,
marking the exclusion reason. After the exclusion process
was completed for every reviewer, the individual selections
were made public for the 3 reviewers and conflicts were
marked automatically. Every conflict was resolved by having

the 3 reviewers read the whole study and come to agreement.
After the exclusion process was finished, the ‘‘studies to
include’’ were extracted from the Rayyan platform as.RIS
format and transferred to the Mendeley Reference Manager
environment. There, the studies were divided into subfolders
based on what published DB they were using. The folders
were: Bonn, CHB-MIT, Freiburg, Other DB, Multiple DB.
Then, each researcher made use of a data extraction sheet (in
Microsoft Excel) to report the main aspects of the experimen-
tal papers. In particular, these aspects were: 1) the DB used
and the number of recordings, 2) the preprocessing or signal
transform methodology, 3) the feature extraction method-
ology, 4) the classification methodology, along with possi-
ble feature selection or dimensionality reduction techniques
applied, 5) the problem they evaluated their methodology on
(for example ictal-interictal) and 6) the performance results
reported.

Finally, for the data synthesis step of this systematic review,
the following results have been extracted: 1) Popularity of
each DB (percentage of studies using it). 2) Popularity of
type of signal transform used: Frequency domain, Time-
Frequency domain or No Transform. No Transform has
been further analyzed as Time-domain (if statistical features
are extracted), Non-Linear (if a Non-Linear transform is
employed), or Raw Signal (if the original signal is fed to a
Neural Network). 3) Regarding the TF studies only: Popu-
larity of specific TF decomposition (e.g. Discrete Wavelet
Transform). 4) Popularity of classification algorithm applied.
5) Accuracy comparison of the classification algorithms
for each different classification problem. 5) Comparison of
methodologies used in the 2017-2019 period and in the
2020-2022 period. Fig. 1 illustrates the research methodol-
ogy, in the form of a diagram.

Then, the final articles were divided into 4 categories
according to the DB they used (Fig. 2). In the literature,
methodologies are presented that have been applied mainly
on the DB of the University of Bonn (Bonn DB) [8], on the
DB of the Children’s Hospital of Boston - Massachusetts
Institute of Technology (CHB-MIT DB) [9] or on other
databases such as the Epilepsy Center of the University of
Freiburg (Freiburg DB) [10].

III. RESULTS
To detect epilepsy and to differentiate the activity associated
with epileptic seizures, several milestone databases have been
published, which are widely used by research teams for the
application of methodological approaches. Specifically, the
most well-known DB is Bonn DB. This DB concerns a
short-term scalp and intracranial EEGs parts of physiological
activity by individuals without seizures and EEGs segments
of recordings of interictal and ictal activity of individuals
that suffer from seizures. Another well-established DB is the
CHB-MIT DB, which includes long lasting, multi-channel,
scalp EEGs recordings of children that suffer from epilepsy.
Moreover, the Freiburg DB contains scalp and intracranial
EEG recordings of epileptic individuals, during periods of
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FIGURE 1. Systematic review flowchart according to PRISMA statement.

FIGURE 2. Separation of experimental studies according to the database (DB) that has been used.

absence of seizures and during periods of seizures. Last
but not least, other databases such as Bern-Barcelona DB
or Temple University DB are quality EEG databases with
epileptic recordings, that are still gaining popularity among
the researchers.

In most studies, signal processing techniques are applied
to one of these databases. The proposed methodologies are
based on:

• Time Analysis (Statistical Features)
• Frequency Analysis (Fast Fourier Transform)
• TF Analysis (Short-time Fourier Transform, Wavelet
Transform, Empirical Decomposition Method, etc.)

• Nonlinear analysis
• Analysis without signal processing technique.

The last category mainly includes studies that apply deep
learning algorithms and do not process the signal to extract
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features, rather that they use the recordings in their initial
form. The next step for every study is to apply a Machine
Learning scheme for the detection of epileptic discharges.
The classification problem that studies try to solve differs
for each research (ictal-interictal or ictal-preictal-interictal or
seizure-non seizure etc.).

This study is structured as follows. The Results section
briefly analyses themethodologies used based on the DB they
are tested. For eachDB, themethodologies are further divided
based on the signal processing technique they are using.
After every DB section, a table presenting all the studies
mentioned along with the signal transformation performed,
the classification methodology and the problem solved is
presented. In the final part of the Results, the methodologies
that use multiple databases to evaluate their performance are
summarized. Next, the Discussion section summarizes the
results and presents statistics regarding the choice of DB,
the combination of databases as well as the techniques used,
in an attempt to clearly illustrate the trends and provide future
directions. Furthermore, the studies are divided in 2 sub-
groups, one containing the studies of 2017-2019 and one
containing the studies of 2020-2022 and the differences of
the methodologies most used are discussed. Finally, a brief
comparison between this review and other EEG epilepsy
related reviews is performed.

A. DATABASE OF BONN’S UNIVERSITY (BONN DB)
The University of Bonn EEG Database (Bonn DB) [8] con-
sists of five subsets of EEG recordings that are distinguished
by the capital letters A, B, C, D, E, which refer to signals
beginning with the letters Z, O, N, F and S. From this point
and for the rest of the paper, to keep up with the international
literature, the names of the sets will be the same as the names
of the signals and we will analyze the subsets Z, O, N, F and
S. These sets are formed by EEG recordings, taken from five
healthy volunteers and five people with epilepsy. Each group
consists of 100 single channel recordings with 23.6 seconds
duration (signal length 4096 samples). The sampling fre-
quency of the data is 173.61 Hz and any kind of interference
due to muscle activity or eye movement, were isolated and
removed by the DB owners, after visual inspection.

Sets Z and O consist of scalp EEG segments that were
obtained from healthy volunteers, who at the time of the
recording were relaxed, sitting, with their eyes closed and
open, correspondingly. EEG recordings were obtained using
surface electrodes, placed, according to the 10-20 Interna-
tional Electrode Placement System. The N, F and S sub-
sets consist of intracranial EEGs, taken from five epileptic
patients, during presurgical examination. More specifically,
the N subset includes parts of interictal intracranial EEG
recordings originating from the epileptic zone of the opposite
hemisphere, while the subset O includes parts of interic-
tal intracranial EEG recordings obtained from the epileptic
zone. The S subset includes 100 intracranial EEG record-
ings, obtained from the epileptogenic zone during epileptic

activity. The epileptogenic zone was the hippocampus and no
further patient data is provided.

1) TIME DOMAIN ANALYSIS
Time domain analysis involves techniques for processing
and extracting features using statistical analysis methods or
parametric methods that calculate statistical features directly
from the signal. Such features are mean, standard deviation,
interquartile range, kurtosis, skewness, energy and more.
Time domain features is the simpler form of features used
in every signal analysis methodology and do not require a
transformation of the signal. However, more often than not,
statistical features are used in combination with frequency or
TF features.

Saini et al. [11] proposed a methodology that exports
15 statistical characteristics from Bonn DB recordings.
Specifically, 300 EEG segments were used from the Z, F,
S groups and the minimum value of amplitude, the maxi-
mum value of amplitude, the average value, the median, the
standard deviation, the energy, the coefficients of curvature
and the asymmetry, the entropy, the fluctuation, the transit
rate of zero and the coefficient of variation were calculated.
Then, a Neural Network classifier using the Particle Swarm
Optimization algorithm achieved a 99.30% Classification
accuracy (ACC) for the Z-F-S classification problem. Also,
other studies such as the research of Eltrass et al. [12] have
also relied on similar features such as the energy of the signal
as a feature for training a Quantized Kernel Least Mean
Square classifier.

In another case study of extracting features from the time
domain [13], Sharmila et al. examined linear features from
Bonn’s DB. Specifically, the wavelength, the transit rate of
zero, the number of slope sign changes, the standard devia-
tion, the average value and the average power for 14 classi-
fication problems, were calculated. The effectiveness of the
methodology was tested with the SVM and the Bayes Sim-
plified classifier for many combinations of features and after
comparing the classification results, the best results of ACC,
Sensitivity (SENS) and Specificity (SPEC) that were reported
were achievedwith the SVMclassifier. Yet, another study that
used only statistical features in an SVM classifier (AdaBoost
Least-Square SVM) was published by Al-Hadeethi et al.
[14]. They achieved 99% classification ACC in the
ZONF-S problem.

Kabir et al. [15] used the K-means clustering algorithm to
group the BonnDBEEGdata according to the pattern similar-
ity. Then, they calculated statistical characteristics (average
value, standard deviation, maximum and minimum value,
intra-quadratic range, coefficients of curvature and asymme-
try) to form the characteristic vector that was given as an
input to three classifiers. The SVM had the best results for
all 4 classification problems (Z-S, O-S, N-S, F-S) with ACC
scores ranging from 93.13% to 100%. Zeng et al. [16] used
a Gray Recurrence Plot to explore the recursive properties of
the time series dynamics of the epileptic EEG signal. Then
they trained a dense convolutionNeural Network (GRP-Dnet)
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and outperformed other methodologies achieving 100%ACC
in the ZONF-S classification problem.

2) FREQUENCY DOMAIN ANALYSIS
Fourier analysis is the technique that transforms the signal
from the time domain to the frequency domain and has been
vastly used during the recent decades, for the frequency
analysis of EEG signals. Discrete Fourier Transform (DFT)
or Fast Fourier Transform (FFT) are both implementations
of the Fourier transform principles and can be employed to
perform analysis in the frequency domain.

Gupta et al. [17] proposed a methodology that uses Fourier
series and Bessel functions, in order to analyze EEG sig-
nals and extract the 5 key brain rhythms, from which the
Weighted multiscale Renyi Permutation Entropy was then
calculated. Then, they evaluated 3 machine learning algo-
rithms in 7 classification problems (Z-S, O-S, F-S, N-S,
NF-S, ZONF-S and Z-N-S). The SVM achieved the best
performance with 10-fold cross-validation, reaching ACC
of over 97% for all classification problems. Na et al. [18]
proposed a methodology that classified EEG signals which
were transformed by DFT via a KNN classifier and achieved
ACC of 99.4% in the ZONF-S problem. Pal et al [19], Polat
et al [20] andWang et al. [21], used the FFT to extract spectral
energy features and trained different classifiers. The first and
the third research used a KNN algorithm achieving 99.73%
ACC in the Z-N-S problem and 99% ACC in the Z-F-S
problem, respectively. The second research used the SVM
classifier achieving 82.5% ACC in the Z-O-N-F-S problem.
Li et al. [22] examined a Time-Varying AutoregressiveModel
(TVAR) for the classification of EEG signals of seizures.
For the autoregressive model, which is based on radial basis
functions (RBF), the Power Spectral Density was calculated
for the 5 EEG rhythms and then the SVM algorithm was
trained for the classification of the 4 categorization problems
Z-S, F-S, N-S and NF-S. Using the 10-fold cross validation,
ACC scores achieved were equal to 100%, 99.80%, 97.60%
and 98.73%, respectively.

An alternative technique based on the Fourier Transform
(Masking and Check-in based Feature Extraction Technique -
MCFET) was presented in [23]. Choubey et al. calculated the
variation, the Signal-to-Noise Ratio and the standard devia-
tion from the frequency bands and trained the kNN algorithm
in the problems F-S, ZF-S, ONF-F, Z-S, N-S. The results
reached ACC scores over 97% for all classification problems.

According to De la O Serna et al. [24] ‘‘the basic problem
of the DFT, in dealing with dense spectral components, is that
it distorts amplitude and phase’’. Thus, the DFT is accurate
on signals with constant amplitude, frequency and phase. So,
theDiscrete Taylor-Fourier Transform (DTFT)was proposed,
which substitutes each DFT constant coefficient by a Taylor
polynomial that are referred to as O-splines. In another paper
of the same author [25] regarding epilepsy classification, the
DTFT was employed for the transformation of the signal in
the frequency domain and a SVM classifier was trained that
achieved 94.88% ACC in the ZO-NF-S problem.

Lastly, Mathur et al. [26] proposed a methodology that
used the Ramanujan Periodic Subspace (RPS) to extract the
periodic information of the signal. They calculated the energy
of each projection of the RPS of each non-overlapping epoch
of the epileptic and non-epileptic signals and trained an SVM
classifier that achieved ACC= 99.5% in the Z vs S problem,
ACC = 98.6% in the O-S, ACC = 98% in the N-S and
ACC = 97.5% in the F-S problem.

3) TIME-FREQUENCY DOMAIN ANALYSIS
Several Time-Frequency analysis methods have been pro-
posed for epilepsy detection such as Short-Time Fourier
Transform, Wavelet Analysis, Empirical Mode Decomposi-
tion, to name just few, aiming to extract the frequency content
of the signals and then calculate linear and/or non-linear fea-
tures. Time-Frequency analysis methods can analyze better
the dynamic behavior of brain signals and capture the subtle
changes in EEG waves. Time-Frequency analysis provides a
signal representation both in temporal and in spectral domain.
Thus, it can better characterize the dynamics of the EEG
signal and provide a thorough interpretation of the neurophys-
iological mechanisms [27].

a: SHORT-TIME FOURIER TRANSFORM
The Short-time Fourier Transform (STFT) is the evolution of
the Fourier Transform and implements a Fourier Transform
in a rolling window to analyze the signal simultaneously
in the field of frequency and time. Different approaches to
STFT, are proposed by Li et al. [28], Yildiz et al. [29], Nogay
et al. [30] and Mandhouj et al. [31] who all used STFT to
represent EEG data in phase and amplitude images. Then, the
first study applied image analysis techniques, where phase
and amplitude images were divided into blocks and a binary
number is extracted for each part. The results with SVM for
8 classification problems (Z-S, O-S, N-S, F-S, NF-S, ZONF-
S, ZO-NFS, Z-F-S, ZO-NF-S) showed high percentages of
ACC, SENS and Specialty that reached 100% for Z-S, O-S,
N-S, F-S. The second and third study applied transfer learning
(alexnet, resnet-18, etc) and Convolutional Neural Networks
(CNN) respectively and achieved 100% classification ACC
in the ZO-NF-S problem. The last study also applied CNN
and achieved ACC= 98.88%, SENS 98.33%, SPEC= 100%
in the ZO-S problem. Jana et al. [32] also proposed a STFT
approachwith a SVMclassifier and obtainedACC= 97.63%,
SENS = 98.38%, SPEC = 94.67% in the ZONF-S problem.

b: WAVELET ANALYSIS
Discrete Wavelet Transform (DWT) is the TF method used
in most of the TF Analysis studies. Wavelet Transform is a
method that analyzes the signal at a TF level and uses math-
ematical functions to detect abrupt signal transitions, such as
epileptic spikes. In recent years, various research teams have
shown increasing preference, among other techniques, with
DWT showing significant advantages in both frequency and
time domain.

The main idea behind DWT is that a signal can be
expressed as a linear combination of a set of functions,
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obtained by shifting and expanding a single function, called
mother wavelet [33]. The mother wavelet uses the wavelet
and the scaling function as band-pass filters, in order to
decompose the signal into high and low frequency subbands.
The resulting low frequency signal is further divided into high
and low frequency subbands, while this process is repeated,
until the whole signal is decomposed. The low frequency
factors are called Approximation coefficients (cA) and those
of high frequencies are called Detail coefficients (cD). The
number of decomposition levels, as well as the appropriate
mother wavelet, is very important and is selected based on
the sampling frequency and the data that are analyzed.

In a recent study, Sharmila et al. [34], applied a 5 level
DWT and calculated the Approximate entropy and the Shan-
non entropy for each frequency subband. Then, the SVM
algorithm was trained for 15 different classification problems
with 50% of the data used as testing set and 50% as training
set and achieved high ACC inmost of the problems. The same
team of researchers in their next study [32] calculated the
average of the absolute values of the coefficients, the standard
deviation and the power for each subband, after applying the
5-level DWT, only for signals of the Z-S groups. Linear Dis-
criminant Analysis was applied as a feature reduction tech-
nique and then various traditional classifiers were trained.
The k-Nearest Neighbors classifier provided the highest clas-
sification performance among them (ACC, SENS, SPEC:
100%). Aliyu et al [35], Lee et al. [36], Oinam et al. [37], and
Mardini et al. [38] also proposed methodologies that used the
DWT to extract features for the classification, and each study
used a different classification approach. Aliyu and Oinam
employed Neural Network approaches (Long Short Term
Memory and Multilayer Perceptron, respectively), while Lee
andMardini used more conventional Machine Learning tech-
niques such as Hidden Markov Model and Naïve Bayes clas-
sifier. Sujatha et al [39] extracted the approximate entropy
and statistical features, using the DWT and trained an SVM
classifier, achieving 96.5% ACC in the ZONF-S problem.

Another method of detecting ictal seizures signals from
simple linear features is proposed by Chiang et al [40]. The
authors applied 5-level DWT and extracted statistical features
of the EEG signals. The best characteristics were selected
based on the information gain. A Petri network was trained
and the classification performance was evaluated by 10-fold
cross validation achieving 93.80% ACC for the ZO-NFS
problem and 98.60% ACC for the ZONF-S problem.

In another DWT-based study, Chen et al. [41] used only
groups F and S and employed a 6-level DWT transform.
Then they calculated nonlinear entropy characteristics, such
as Approximate Entropy, Spectral entropy, Fuzzy entropy,
Permutation entropy, Sample entropy, Shannon entropy and
Conditional entropy. The same approach was followed by
Zhou et al. [42]. Then, the first study used only the character-
istics from the low frequency coefficients D3, D4, D5, A5 and
the one factor Variance analysis to select the 18 best charac-
teristics. Detection of the epileptic EEG segments achieved
up to 99.50% ACC with the Least-square Support Vector

Machines (LS-SVM) algorithm. The second study used a
Radial Basis Function (RBF)NN and achievedACC= 96.3%
and ACC = 78.4% in the ZO-NFS and Z-O-N-F-S problems
respectively.

Wang et al. [43] applied a 5-level DWT and calculated the
mean energy value and the standard deviation of the trans-
formed signal. The Gradient Boosting algorithm was trained
for 9 different classification problems and achievedACC over
93% for all of them. In a similar study [44], Akut et al.
applied a 5-level DWT and trained an 11 level Convolutional
Neural Network (CNN) based on the low-frequency D3, D4,
D5 and A5 wavelet factors. The methodology achieved 100%
ACC, SPEC and SENS of the detection of the epileptic group
(ZONF-S) and 99.40% ACC for the separation of healthy,
epileptic not experiencing a seizure and epileptic experienc-
ing a seizure (ZO-NF-S).

At the next study, Alzami et al. [45] proposed an Adap-
tive Hybrid Feature Selection Based Classifier (AHFSE) for
detecting epilepsy. Firstly, they applied a 4 level DWT with a
db4 mother wavelet. Then statistical features and non-linear
features such as the sample entropy and the fractal dimen-
sion were extracted. Various feature selection techniques
were tested for 8 classification problems (Z-S, O-S, N-S,
F-S, NF-S, ZONF-S, Z-F-S, ZO-NF-S) and the proposed
AHFSE classifier achieved a Classification ACC of over
96% in all of the problems. In another study, Zubair et al.
[46] extracted band energies, spike rhythmicity, relative spike
amplitude and spectral entropy from the DWT and trained
a CatBoost classifier, achieving 97% ACC in the ZONF-S
problem.

An enhanced methodology of DWT with optimal equi-
lateral wavelet filter bank (OEWFB) has been proposed by
Ashokkumar et al. [47]. The OEWFB novelty is that is
designed with the objective of frequency spread reduction.
In this work, they extracted entropy features (Fuzzy, Renyis
and Kraskov) and by using multiple machine learning algo-
rithms they achieved ZONF-S ACC up to 99.4%

Often, DWT is combined with other preprocessing and
feature extraction methodologies, in order to provide the
classifier in the next step with a wider variety of features. For
example, Amin et al. [48] employed DWT along with Arith-
metic coding, and trained multiple classifiers (SVM, MLP,
KNN). Jang et al. [49] combined DWT with Phase-Space
Reconstruction (PSR) algorithm, and Molla et al. [50] used
it along with Graph Eigen Decomposition (GED). Lastly,
Radman et al. [51] combined DWT, Fast Fourier Transoform
and statistical, time domain features to extract a complete
feature vector to be fed in a Random Forest Classifier that
achieved ACC= 99.33%, SENS= 98.33%, SPEC= 98.88%
in the ZO-NF-S problem. Ashokkumar et al. [52] proposed
a methodology that combined Fractional S-transform with
4-level DWT and extracted entropy features to train a deep
CNN. Zeng et al. [53] combined Intrinsic Time-Scale Decom-
position, DWT and PSR for the feature extraction procedure,
and trained a MLP that achieved 94% ACC in the Z-O-N-F-S
problem
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An extension of the Continuous Wavelet Transform, the
Stockwell Transform (Stockwell - S-Transform) was used by
Chatterjee et al. [54]. The authors implemented the Stockwell
Transform and calculated the standard deviation and energy
from each period. The SVM and kNN algorithms were tested
for their performance in the Z-S and F-S classification prob-
lems. The best performance (ACC, SPEC, SENS: 100% for
the Z-S and ACC: 99.25% SPEC 100% and SENS 98.85%
for the F-S) appeared with the kNN algorithm. Furthermore,
Baykara et al. [55] also employed the Stockwell Transform
and obtained entropy features and Perservals energy, achiev-
ing ACC 90%, SENS 95%, SPEC 82% in the ZO-NF-S prob-
lem with an Extreme Learning Machine (ELM) classifier.

Zhao et al. [56] proposed a methodology based on the
Stationary Wavelet Transform (SWT) and the Hilbert-Huang
Transform for the calculation of instantaneous energy. SWT
is a special case of Wavelet Transform, during which at each
subsequent level the signal is not altered as in DWT but
remains as at the beginning of the transform, changing the
filters each time. In this study, a 4-level SWT was employed,
and then entropy features (Spectral entropy, Renyi entropy,
Approximate entropy), coefficient of variation, spectral char-
acteristics (spectral flux) and spectral flatness, the mean
value and the Shannon entropy for the characterization of
instantaneous energy were calculated. A Kruskal-Wallis test
evaluated the characteristics as a feature selection step. For
the detection, the performance of 5 algorithms was examined,
and a Back-Propagation Neural Network (BPNN) achieved
the best ACC results (over 93%).

In another study [57], Amorim et al. performed 3 sig-
nal transformation techniques, Wavelet Transform, Shearlet
Transform and Curvelet Transform, in all the EEGs of Bonn
DB. For the application of the Curvelet and the Shearlet
Transform, the EEG signals (4097 samples) were converted
to 64 × 64 pixel images. Then they calculated statistical
characteristics and power coefficients in each zone, as well
as the ratio of the absolute mean values of neighboring zones.
Then, the Principal Component Analysis and Linear Discrim-
inant Analysis techniques were applied for dimensionality
reduction and the performance of SVM, Random Forests and
kNN was examined. EEG data sets consisting of epileptic
and non-epileptic data were randomly separated with 60%
of the data being used as training set and 40%, as test
set. The best classification results for the 5-class problem
(Z-O-N-F-S) were achieved with the Curvelet Transform
and the Random Forests classifier with ACC 81.50%, SPEC
81.70% and SENS 81.50%.

An enhanced Wavelet TF transformation is the Wavelet
Packet Decomposition (WPD). WPD is a Wavelet Transform
that uses multiple filters at each level of transform, analyzing
both the coefficients of detail and approximation, creating a
signal decomposition tree in frequency sub-bands [33]. In the
study presented by Liu et al. [58] the WPD was employed,
and the EEG signals were analyzed in 8 frequency bands
and then, the energy, the entropy for each frequency band
as well as other time-domain characteristics were calculated.

The feature vector trained an Extreme Learning Machine
(ELM) Feedforward Neural Network, for the Z-S and Z-F-
S problems. The results for the two classification problems,
in terms of ACC, reached 97.70% and 96.50% respectively.
Ari et al. [59] also extracted the dispersion entropy using
a WPD and trained an SVM classifier, obtaining 99.53%
ACC in the Z-O-N-F-S problem. Other machine learning
approaches that have been used along WPD (regarding the
Bonn DB) are Graph-Based ELM [60] and TSK fuzzy system
[61]. A modified version of the Wavelet Transform namely
Scattering Transform was employed by Jiang et al. [62] and
achieved 99.87%ACCwith a SVM classifier in the ZO-NF-S
problem.

A different version of Wavelet Transform is the Tunable
Q-factor Wavelet Transform (TQWT). TQWT is a Wavelet
Transform configuration that utilizes the Q factor and a series
of variable band’s width filters [63]. The factor Q of a pulse
expresses the ratio of the central frequency of the pulse to its
bandwidth. Sharma et al. [64] analyzed the 16-level TQWT
to decompose the signal into frequency bands. Then, the
Higuchi Fractal Dimension (HFD) was calculated for each
zone, forming the feature vector for the LS-SVM classifier
and achieving classification ACC over 98.50%. Similar to
the study [64], Sharaf et al. [65] used TQWT to decompose
EEG sections into frequency bands. Chaotic, frequency and
statistical characteristics, from each frequency band were
calculated. At the same time, the contrast, the correlation, the
energy and the homogeneity of the TQWT transformed EEG
images were extracted. Afterwards a Firefly Optimization
Algorithm was applied to reduce the vector of the features,
that were fed to a Random Forest classifier. The Classifica-
tion ACC for the ZO-NF-S problem reached 99%. Lastly,
Ashokummar et al. [66] used TQWT to extract the approx-
imate entropy and train an Extreme learning adaptive neuro-
Fuzzy Inference System (EXL-ANFIS) that achieved 99.72%
ACC in the ZO-NF-S problem.

The importance for the selection of frequency bands and
their impact on the classification of epileptic activity has
been also studied by Tsipouras [67]. First, DWT of different
decomposition levels with variable bandwidth was applied.
The recordings were divided into frequency bands, from
which the energy of the individual bands, the ratio of the
energy of each frequency band to the total energy and the
spectral entropy were calculated. The classification ACC,
using the algorithm of Random Forests, reached 91.20%
for the Z-O-N-F-S problem and 98.80% for the ZO-NF-S
problem.

A study analyzing Bonn DB EEG signals, using Wavelet
Analysis, employed evolutionary algorithms in the epileptic
signal detection methodology. Bandil et al. [68] used EEG
recordings only from groups Z, F, S from Bonn DB. They
applied the 5-level Discrete Wavelet Transform and calcu-
lated a number of characteristics such as energy, entropy
characteristics, statistical characteristics and morphological
characteristics based on a self-regression model. Then a
Genetic Algorithm (GA) for feature vector optimization was
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proposed and the final characteristics were fed to an NN
algorithm, achieving 99% Classification ACC for the Z-F-S
problem. A quite similar approach (DWT, GA for feature
selection, entropy characteristics) was employed by Omidvar
et al. [69] and achieved ACC = 98.7% SENS = 97.5%,
SPEC = 100% in the ZO-NF-S problem.

Another variation of Wavelet Decomposition is Empirical
Wavelet Transform (EWT). The main idea behind EWT is
to extract the different modes of a signal by designing an
appropriate wavelet filter bank [70] and was first proposed at
2013. Anuragi et al. [71] used EWT to perform EEG signal
decomposition and feature extraction which was then feeded
to an Extra Trees classifier and achieved ACC = 99.33%, F1
= 99% in the Z-N-S and ACC = 97.8%, F1 = 97% in the
ZO-NF-S problem.

c: EMPIRICAL MODE DECOMPOSITION
The Empirical Mode Decomposition (EMD) is another TF
method that creates a set of Intrinsic Mode Functions (IMFs),
from which, via the Hilbert-Huang transform, the instanta-
neous amplitude and frequency [72] are calculated. Biju et al.
[72] used all the EEG data from the Bonn DB and applied
the EMD transform. Characteristics of Energy, Entropy (e.g.
Approximate Entropy), were calculated and fed to an Adap-
tive Neuro-Fuzzzy System (ANFIS) reaching a percentage of
ACC, SENS and SPEC equal to 100%.

Mahjoub et al. [73] presented a complete study of EEG
analysis techniques. Specifically, they studied the charac-
teristics of the signal as extracted from the untreated sig-
nal, from the 3-level TQWT and the EMD, both for the
entire length of the signal and for periods of 1000, 2000,
3000 and 4000 points, without overlap. The SVM algorithm
was trained with the method of 5-fold cross-validation for
6 classification problems (Z-S, O-S, F-S, N-S, NF-S and
ZONF-S). The best results were obtained using the second
IMFs of the Empirical Decomposition Method with periods
of 3000 points, reaching high ACC scores of over 98%,
for all problems. In addition, equally high percentages of
detection ACC were observed via untreated data with periods
of 1000 points, as well as with the third and fourth subband
of TQWT with a window of 4000 samples.

Sharma et al. [74] proposed an alternative approach of
calculating local minima and maxima in the Hilbert-Huang
Transform, the iterative filtering. In this study, the IMFs were
extracted by repeated filtration and entropy characteristics
(such as Shannon entropy) were calculated from different
window lengths, in order to form 5 classification problems
(ZO-NF-S, Z-N-S, Z-S, ZONF-S, F-S). The classification
ACC reached over 96% with the Random Forests algorithm
and the 10-fold cross-validation method for all classification
problems.

A methodology based on EMD and Artificial Neural Net-
works was presented by Mahjoub et al [73]. Amplitude and
frequency features were extracted from the first 4 IMFs,
via the Hilbert-Huang Transform. Then the most important
characteristics of the 5 subsets (Z, O, N, F, S) were inserted in

an Artificial Neural Networks classifier (based on statistical
evaluation). The classification ACC for Z-O-N-F-S reached
87.20%. EMD was also implemented in the study [75] by
Mert and Akan. The energy, extracted from the IMFs was
used as a feature for classification and their methodology
achieved ACC scores 97.89%, 83.68%, 96.39%, and 93.00%
for the problems Z-S, O-S, N-S and F-S respectively. Yet
another study that used Neural Networks along with com-
plete ensemble EMD was published by Singh et al. [76]
and achieved 98.7% ACC in the ZO-NF-S problem. Lastly,
Hassan et al. [77] proposed a complete ensemble EMD with
adaptive noise methodology that used the AdaBoost ensem-
ble classifier with decision trees for the weak classifiers and
achieved 97.6% ACC in the ZO-NF-S problem and 99.2%
ACC in the ZONF-S problem.

Another EMD based methodology that applies the
GrasshopperOptimizationAlgorithmwas presented by Singh
et al. [78]. 10 non-linear and 3 morphological features
were extracted from the IMF’s and five machine learning
algorithms were tested individually after hyperparameter
optimization with the Grasshopper Optimization Algorithm.
Finally, an ensemble method was proposed consisted of these
5 algorithms. Bari et al. [79] proposed a methodology that
used EMD with normalized IMF’s and trained a Quadratic
discriminant analysis (QDA) classifier, achieving ACC =
99%, SENS = 98.5%, SPEC = 100% on the NF-S problem.
Another TF decomposition namely Intrinsic Time-scale

Decomposition (ITD) was presented by Yang et al. [80]. This
method decomposes a time series into Proper Rotation Com-
ponents (PRC). From the PRC’s the instantaneous amplitude
and frequency, the mean value, the standard deviation and
coefficients of curvature and asymmetry were calculated. The
resulting feature vector was used to train a Neural Network
for 17 classification problems and the ACC scores ranged
from 98.67% to 100%.

Finally, a new signal decomposition technique that is called
Variational Mode Decomposition (VMD) has been utilized
by Sukriti et al. [81]. VMD decomposes a multi-component
signal in a set of bandlimited and quasi-orthogonal modes,
which are less sensitive to noise compared to the EMD.
Sukriti et al, extracted kurtosis and bandwidth features
using the VMD and trained a Random Forest classifier that
achieved ACC = 98.2%, SENS = 99.7%, SPEC = 98.7% in
the ZO-NF-S problem.

d: NON-LINEAR ANALYSIS
This category includes studies with methodologies based on
the extraction of non-linear characteristics, such as entropy or
Fractal Dimensions.

Li et al. [82] calculated Fuzzy Entropy and Entropy from
different window lengths and achieved 93% ACC for the
separation of normal from epileptic data (ZO-NFS) and 91%
for the separation of interictal/ictal period (NF-S) with a
QDA Classifier. In another study, Mohammadpoory et al.
[83] suggest a Visibility Graph based methodology, a simple
approach for representing signals in a graph and they use the
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Weighted Visibility Graph Entropy (WVGE) to characterize
the weighted visibility graph and distinguish data into normal
(Z), epileptic (F) and ictal (S) periods. A Decision Tree
classifier achieved ACC of 97%.

Furthermore, Detrended Fluctuation Analysis (DFA) is yet
another non-linear technique widely used for noise signal
analysis [84], [85]. Bose et al. [85] applied a non-linear
method namely the Multifractal Detrended Fluctuation Anal-
ysis (MDFA). According to the methodology, 14 character-
istics including the Hurst exponent are extracted, from the
multifractal spectrum and the optimal characteristics based
on the Kruskal-Wallis test are used to train an SVM classifier.
The classification results are expressed with ACC, SENS
and SPEC for the four classification problems (ZO-S, NF-S,
ZO-NF, ZONF-S) all exceeding 95%. Lahmiri et al. [86]
also DFA and the Hurst exponent and trained a kNN algo-
rithm with ACC reaching 100% for the NF-S classification
problem.

Rizal et al. [87] used the Higuchi method to estimate
HFD from 300 EEG signals of Bonn DB and the features
obtained were used as input to an SVM classifier. The pro-
posed methodology provided high percentages of classifica-
tion ACC (98%). Brari et al. [88] also calculated the Higuchi
Fractal Dimension of the signal and trained a KNN classifier,
achieving 97.28% ACC in the ZO-NF-S problem.

Another non-linear methodology widely used is Recur-
rence Quantification Analysis (RQA). Gao et al. [89] used
non-linear features such as RQA and approximate entropy
and trained a Convolutional Neural Network achieving
ACC = 99.26%, SENS = 98.84%, SPEC = 99.26% in the
ZO-NFS problem.

Goshvarpour et al. [90] proposed a methodology that quan-
tifies the self-similarity of the EEG signal by creating a
variation of a Poincare plot, the lagged Poincare plot. Then,
they trained a KNN classifier and achieved ACC = 96%,
SPEC = 99.48%, SENS = 95.19% in the Z-F-S problem.
Zhang et al. [60] proposed a methodology that used

a TF modification of the Wavelet Transform called Fre-
quency Slice Wavelet Transform (FSWT) to explore the
non-linearity of the EEG signal extracting features such as
Fuzzy entropy and Higuchi Fractal Dimension and trained a
t-distributed stochastic neighbor embedding (t-SNE) system
to perform classification in the Z-O-N-F-S problem with
achieved ACC = 93.62%

e: ANALYSIS WITHOUT SIGNAL PROCESSING TECHNIQUE
Principal Component Analysis (PCA) is a dimensionality
reduction technique, for enhancing the classification effi-
ciency. Three variants of PCA are used in the studies [91],
[92] by Jaiswal et al. The researchers propose alternative
approaches to extracting features from the total of Bonn
DB, based on PCA and are called ‘‘Global modular PCA -
GModPCA’’ [91], subpattern based PCA - SpPCA and cross-
subpattern correlation-based PCA - SubXPCA [92]. The
SVM algorithm is trained in many classification problems

(Z-S, O-S, N-S, F-S, ZO-S, NF-S, ZONF-S) and achieves
classification ACC of over 94% for all cases.

In recent years, interest for studies based on deep learning
architectures, with application especially on Convolutional
NN, has been increasing. A common element of deep learning
methodologies is that they use the entire non processed signal
and do not calculate specific characteristics. To distinguish
healthy EEGs from pathological EEGs before and during a
seizure, Acharya et al. [93] proposed a 13-level CNN. The
entire duration of the EEGs was used from the O,F,S groups.
The methodology for the 3-class problem, achieved an ACC
of 88.67%, SPEC 90% and SENS 95%. The advances in
the computational performance is the main reason for the
increase in popularity of raw signal methodologies the latest
years. These systems usually take advantage of a series of
convolution blocks to perform the feature extraction pro-
cess [94], [95], [96], [97], [98]. However, other NN architec-
tures that do not rely on a convolution block have also been
used taking raw signal as input for the epilepsy detection [99].

Similarly, Hussein et al. [100], proposed a model that
combines Deep Learning in a feedback neural network archi-
tecture (Deep Neural Network Long Short-term Memory
Network (LSTM)). In this study, each EEG signal is initially
divided into smaller, non-overlapping periods, of 2 points.
Periods are then given as an input to the LSTM level, which
is used to learn high-level representations of EEG signals.
The output of the LSTM level is provided as an input to a
fully connected level to find the most powerful EEG char-
acteristics, associated with seizures. Finally, a softmax layer
activation function is utilized to generate predictions for each
class. The proposed model achieved 100% ACC, SPEC and
SENS for the three Z-S, Z-N-S and Z-O-N-F-S classification
problems.

Table 1 and Table 2 present the studies that validated their
methodology using the Bonn DB. Table 1 contains the studies
of 2017-2019 and Table 2 contains the studies of 2020-2022.

B. CHILDREN’S HOSPITAL OF BOSTON BASE –
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (CHB-MIT)
The second most used EEG DB is an open access DB
provided by Children’s Hospital of Boston - Massachusetts
Institute of Technology (CHB-MIT) [9]. The DB includes
long, continuous, multi-channel recordings, recorded from
the scalp of 24 people with drug-resistant seizures. For
each participant 9 to 42 consecutive.edf files with EEG data
are provided and the interval of seizures is recorded. EEG
signals were recorded with 256 Hz sampling rate with a
16-bit analog-to-digital converter. In total the DB includes
664.edf files, 140 EEG records and 198 seizures. The DB also
includes the demographic characteristics of the patients. The
24th person was added to the DB after its initial publication
and the information about his gender and age is not available.
Of the 23 remaining, 22 are individual patients, while subject
21 is subject 1 at a recording time of 1.5 years. Of the
22 patients, 5 were men, aged 3 to 22 years, while the rest
17 patients were women, aged between 1.5 and 19 years.

VOLUME 11, 2023 573



A. Miltiadous et al.: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases

TABLE 1. Studies validated on the bonn database published in 2017-2019.
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TABLE 1. (Continued.) Studies validated on the bonn database published in 2017-2019.

However, it is pointed out that it consists mostly of pediatric
cases and 3 marginal pediatric cases (older than 16 years) that
mainly fall into the category of adults.

1) TIME DOMAIN ANALYSIS
A study based on Time domain analysis was presented by
Hu et al. [101] In this study, the authors employed Local
Mean Decomposition and trained a Bidirectional LSTM,
achieving performance of G-mean 92.66% SENS= 93.61%,
SPEC= 91.85% in the ictal-interictal problem. Time domain
characteristics (no signal transformation in Frequency or TF
domain) were also extracted by Quintero-Rincón et al. [102]
and Siddiqui et al. [103]. Finally, Zhao et al. [104] proposed a
methodology that employs PearsonCorrelation for the feature
extraction step and fed a Linear Graph Convolution Network
and achieved ACC = 99.3%, SENS = 99.43%, SPEC =
98.82%, F1 = 98.73% in the ictal-interictal problem.

2) FREQUENCY DOMAIN ANALYSIS
A study focusing on channel selection and reducing the
dimension of the vector characteristics by a non-linear
method, to increase detection ACC, is presented by Birjand-
talab et al. [105]. EEG recordings from the 23 patients of
the CHB-MIT DB were divided into 10-second epochs, from
which the Spectral Power Density was calculated for the
5 basic EEG rhythms, for each of the 23 channels. Then
they applied feature selection based on the Random Forests
algorithm to select the appropriate channels, by limiting
spatial information to the 3 best channels. To further limit
the selected features, the non-linear technique that is called
t-distributed Stochastic Neighbor Embedding (tSNE) was
applied for the final representation of the selected features,
in a 2-dimensional space. In this way, 2 characteristics were
selected for each section of 10 seconds. Finally, a kNN

classifier was employed for the seizure-non seizure problem
achieving SENS equal to 80.87%.

Mansouri et al. [106] proposed a methodology for the
detection of seizures. In their methodology, EEG recordings
are divided into 10 seconds epochs with a 5-second overlap
and the Fast Fourier Transform (FFT) is applied to extract the
power for the 5 EEG rhythms. A threshold function is then
applied for the initial separation of the pathological sections.
In order to study the transition from the preictal to the ictal
period, they created a network of distances, based on the
Euclidean distance between the coefficients of the Fourier
Transform, corresponding to the high band of the rhythm c.
The distance network models the synchronization of brain
activity and the diffusion of a seizure in the brain. A network
of correlations is then created, between the channels. The
original methodology was applied to EEG recordings from
18 patients and provided a SENS rate of 83%.

Zhang et al. [107] proposed a methodology employ-
ing DFT and extracting band energies that they fed in an
Attention Network AttVGGNet, to achieve ACC = 95.6%,
SENS = 94.7%, SPEC = 94.1%, Recall = 89.3%, Preci-
sion = 78.1% in the ictal-interictal classification problem.
Akbarian et al. [108] combined DFTwith effective brain con-
nectivity measures to feed an Autoencoder Neural Network
and achieved ACC = 97.91% SENS = 97.65%, SPEC =
98.06% in the same problem.

An approach using CNN to reduce the vector of charac-
teristics is presented by Tian et al. [109]. The methodology
initially separates the EEG recordings from 23 cases of the
CHB-MIT DB in 1 second periods and uses FFT and WPD
to calculate the time, frequency, and TF characteristics. The
characteristics are then inserted into a Convergent Neural
Network, which reduces the dimension of the vector charac-
teristics and isolates the characteristics with the best classi-
fication ability. The classification model is based on a TSK
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TABLE 2. Studies validated on the bonn database published in 2020-2022.

576 VOLUME 11, 2023



A. Miltiadous et al.: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases

TABLE 2. (Continued.) Studies validated on the bonn database published in 2020-2022.

fuzzy system and achieves percentages of ACC, SENS and
SPEC equal to 98.30%, 96.70% and 99.10% respectively.

3) TIME-FREQUENCY DOMAIN ANALYSIS
a: SHORT-TIME FOURIER TRANSFORM
Short-Time Fourier Transform has been used in a few
EEG-based epilepsy detection studies. Cao et al. [110]
proposed a methodology based on spectral characteristics
for the training of a CNN. They applied STFT to cal-
culate the spectrum amplitude from frequency subbands
and then used a 2-level CNN, to select and fuse the

characteristics that trained an ELM neural network. The vali-
dation of the methodology was done in the total of CHB-MIT
for 3 problems: ictal/interictal, ictal/interictal/preictal and
ictal/interictal/preictal status 1/preictal status 2/preictal status
3 achieving high classification rhythms (99.33%, 98.62% and
87.95 respectively). Gabr et al. [111] extracted spectrogram
and scalogram images from the STFT and trained a CNN that
achieved 97% ACC in the ictal-preictal-interictal problem.
Similar methodologies were proposed by Nasiri et al. [112]
and Zhang et al. [113], who they proposed CNN methodolo-
gies that classified images obtained from STFT. Nasiri et al.
achieved ictal-interictal ACC = 91.71%, SENS = 91.09%,
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TABLE 3. Studies validated on the CHB-MIT database published in 2017-2019.

SPEC = 94.73% using the leave-one-subject-out cross vali-
dation method. Zhang et al, achieved ictal-interictal ACC =
97.75% Recall = 98.44%, Precision = 97.47%.

b: WAVELET ANALYSIS
In a DWT-based study [114], Ahmad et al. used a new signal
analysis method, originally proposed in the study ‘‘Invari-
ant Scattering Convolution Networks’’ [115] by Bruna and
Mallat, to extract characteristics from EEG recordings and
detect abnormalities to identify seizure regions. The method
is based on the Scattering Transform, the basic idea of which
is to connect theWavelet Transform to CNN. The researchers
applied the technique to EEG data from 24 patients from the
CHB-MIT DB and they examined several window sizes with
lengths of 32, 64, 128, 256, 512 and 1024 points, concluding
that the best window length was 2 seconds (512 points),
with 50% coverage. The unsupervised classification method
managed to classify 180 of the 197 seizures correctly (ACC:
91.40%).

Similarly, Ibrahim et al. [116] proposed a methodology
based on the DWT, the Shannon entropy and the k-nearest
neighbors algorithm. Specifically, the DWT analyzes the sig-
nal into individual frequencies and Shannon entropy and the
standard deviation are calculated for each frequency and for
the whole spectrum. The vector characteristics is provided
as an input to a kNN classifier for seizure detection. The
methodologywas applied to EEG recordings from 10 patients
from CHB-MIT with 55 seizures and 570 hours of analysis in
total and had a SENS of 94.50%.

Recently, Mouleeshuwarapprabu et al. [117] employed
the DWT and achieved ACC = 95.6%, SENS = 94.7%,
SPEC = 94.1%, Recall = 89.3%, Precision = 78.1% at
the ictal-interictal problem using a Nonlinear Vector Decom-
posed Neural Network. In another work, Harpale et al. [118]
proposed an adaptive method using Pattern WT to feed a
Fuzzy classifier and achievedACC= 96.02%SPEC= 94.5%
in the ictal-interictal problem. Khan et al. [119] combined the
DWTwith the LDA classifier for the same problem achieving
ACC= 99.6%, SENS= 99.8%. Different TF methodologies

such as DWT and EMD have also been combined in studies
for enhanced feature extraction [120], [121].

Table 3 and Table 4 present the studies that validated their
methodology using the CHB-MIT DB. Table 3 contains the
studies of 2017-2019 and Table 4 contains the studies of
2020-2022.

C. EPILEPSY CENTER OF UNIVERSITY OF FREIBURG
(FREIBURG DB)
The DB from the Epilepsy Center of the University of
Freiburg (Freiburg DB) [10] includes continuous long-term
EEG recordings taken from 21 patients (8 men aged
13-47 years, 13 women aged 10-50 years) suffering from
drug resistant focal epilepsy. Each EEG recording is taken
from six intracranial channels, three focal and three non-focal
electrodes, sampled at 256Hz.

EEG data are divided into ictal (providing the beginning
and the end of epileptic activity), preictal and interictal activ-
ity. At least 24 hours of continuous interictal EEG activity has
been recorded for each patient. For each patient two to five
seizure episodes are recorded, lasting from a few seconds to
a few minutes (from 4.21 to 1071.5 seconds), composing a
set of data of 88 seizures, 509 hours of interictal activity and
199 hours of preictal and ictal activity.

On this basis, a clear distinction is made between ictal
and interictal activity for each of the patients. The record-
ings during a seizure, include at least 50 minutes of preictal
activity. Although the DB is no longer accessible and can
only be accessed through the EPILEPSIAE project [10], it is
one of the most complete accessible EEG databases with
long-lasting recordings and it has been used in the past exten-
sively by research teams worldwide. In recent years, only a
few research papers that test their methodologies on this DB
have been proposed.

Ma et al. [122] applied Dictionary Learning and Sparse
Representation algorithms to classify ictal and interictal data.
According to the proposed methodology, the Freiburg DB
EEG recordings are cut into 4-second periods and a 5-level
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TABLE 4. Studies validated on the CHB-MIT database published in 2020-2022.

DWT is applied, the high frequency coefficients (>32 Hz)
are removed and the signal is reconstructed. Zhan et al.
[123] utilized DWT along with Fourier Transform and a
Convolution Block for feature extraction and trained a Fuzzy
C-means classifier achieving ACC = 89.75%, SENS =
85.52% in the ictal-interictal problem. Mu et al. [124] com-
bined DWT with a Graph-regularized non-negative matrix
factorization for 21 patients with intracable focal epilepsy and
trained a Bayesian LDA classifier achieving ACC= 98.16%,
SENS = 93.2%, SPEC = 98.16% in the same problem.

1) NON-LINEAR ANALYSIS
Mu et al. [125] employed the bispectrum analysis, to study
the relationship between different frequencies from different
channels and from different regions of the brain. The method-
ology analyzed EEG data from 19 patients, with 78 seizures
from Freiburg DB. Nonlinear characteristics, such as entropy
characteristics, they were calculated from the bispectrum
analysis and used as the input vector in an SVM classifier

to separate ictal from interictal activity. Classification results
showed high percentages of ACC (96.80%), SENS (95.80%)
and SPEC (96.70%).

D. OTHER DATABASES OF EEG EPILEPSY RECORDINGS
In addition to the 3most widely used EEGdatabases that were
analyzed in detection methodologies, several research teams
have applied their methodologies to new EEG databases.
Some of these databases are openly accessible (Bern-
Barcelona, Temple University Hospital), while others involve
clinical EEG recordings that are not available through their
studies.

The Bern-Barcelona EEG DB [126] was published in
2012 by a team of researchers who published the Bonn DB
and includes 7,500 intracranial recordings from 5 people
with drug-resistant, temporal epilepsy. The 20-second record-
ings originate from 2 electrodes (one focal and one non-
focal) and have been sampled at 512 Hz. In studies [127],
[128], [129] they apply time domain analysis along with a
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self-regression model [127], TF analysis with TQWT [129],
EMD [130], or Non-Linear analysis with Higuchi Fractal
Dimension [131] for the detection of seizures or the separa-
tion of focal/non-focal EEG activity.

A more extensive DB was published in 2016 by I.Obeyd
and J. Picone with clinical recordings from Temple Uni-
versity Hospital (TUH-EEG Corpus) [132]. The TUH-EEG
Corpus is a DB is still being renewed and contains the most
long-time, pathological EEG recordings, thus being the most
suitable for deep learning methodologies. It includes 16,986
pathological EEG recordings from different time periods,
from 10,874 patients, some of whom suffer from seizures.
In 2018, the DB was published exclusively for epilepsy cases
[133] containing 315 patients with a total of 822 sessions
of 20 minutes, of which 280 sessions contain 10 different
types of epileptic seizures. The signals were received from
19 recording channels and the majority has been recorded at
256 Hz. In TUH-EEG Corpus research teams mainly applied
TF analysis studies with DWT [134], [135], [136], [137],
or Wavelet Packet Decomposition [138], analysis in the fre-
quency domain [139], and CNN application [140], in order
to detect the seizure activity and to separate the types of
epilepsy. The size of the DB and the number of different logs
is suitable for deep learning methodologies.

The rest of the studies have analyzed recordings from fewer
patients. In the literature, EEG data have been used from the
following databases/clinics:

• Neurology and Sleep Center, New Delhi (NCS)
• Peking University People’s Hospital (PUPH)
• Institute of Neuroscience, Ramaiah Memorial Hospital,
India (RMCH)

• Department of Neurology, Epilepsy Center, Zhejiang
University (INeuro)

• KU Leuven dataset
• MIT-BIH Arrhythmia DB (MIH Arrhythmia) [141]
• All India Institutes of Medical Sciences (AIIMS)
• Department of Clinical Neurophysiology, Maastricht
(MUMC)

• Karunya Institute of Technology and Sciences (KITS)
• pone_pat dataset
• European Epilepsy DB (EPILEPSIAE)

Briefly, NCS DB consists of EEG signals recorded from
10 epileptic subjects with a 16-electrode, 200 Hz sampling
rate system, divided in three categories: ictal, interictal and
preictal. PUPHDB consists of EEG signals of 7 epileptic sub-
jects with a 256 Hz sampling rate. KU Leuven DB consists of
EEG recordings of 22 subjects with 22 electrodes during ictal,
interictal and preictal states. AIIMS DB contains 20-minute
signals from 13 epilepsy patients recorded from a 32-channel
EEG system, with 256 Hz sampling rate. MUMC DB con-
sists of 40 routine EEG recordings obtained at the intensive
care unit with a 19-electrode setting and 250 Hz sampling
rate. KITS DB consists of 258 normal, generalized and focal
epileptic EEG signals, recorded with 256 Hz sampling rate
and a 16-channel setting. Pone_pat DB consists of ECG and

EEG of 15 epileptic patients, with 512 Hz sampling rate.
Finally, the EPILEPSIAE DB contains scalp EEG record-
ings of 217 patients and intracranial EEG recordings from
58 patients from 3 different epilepsy centers that have been
recorded during long-term presurgical monitoring.

Also, datasets from other clinics (published or not) that are
used in studies together with the well-established datasets of
Bonn, CHB-MIT, Freiburg and TUH are briefly mentioned in
the next paragraph.

E. DATABASE COMBINATION
Methodological approaches for detecting epileptic activity
have, also, been applied to more than one DB, that usually
being to two of the three known EEG databases (Bonn DB,
Freiburg DB, CHB-MIT), along with the NSC. By doing
so, researchers attempt to ensure the generalization of the
approach they propose and at the same time, to check
and compare the effectiveness of their method with other
methodologies.

In most of the studies the methodology is applied to the
short-term EEG sections of Bonn DB and to the pediatric,
long-time EEG recordings of the CHB-MIT DB. In recent
experimental studies, the methodologies apply TF Analysis,
either with Wavelet Transform [142], [143], [144], [145],
or with EMD [146], [147], Non-linear Analysis [148], or they
use the signal directly without processing and with deep
learning algorithms [149], aiming at detecting epileptic
activity.

More complex methodologies are applied to the stud-
ies that are evaluated on the CHB-MIT and Freiburg DB
databases [150], [151]. CNN neural networks have been
used in a methodology that processes signals directly from
long-time recordings from CHB-MIT and Freiburg DB
databases, achieving ACC rhythms of over 95% for three
classification problems [150].

The research revealed only one seizure detection method-
ology, applied to EEG data from Bonn DB, Freiburg DB and
CHB-MIT [152]. Initially the EEG recordings were split into
4-second periods, then a 5-level DWT (db4) is applied, and
the Local Binary Patterns (LBP) are calculated to charac-
terize the seizures episodes. Then a collaborative learning
framework is created with SVM algorithms, based on the
Easy Ensemble, for the classification of seizures and non-
seizure that are not balanced. Finally, a multi-level decision
fusion algorithm is proposed. Classification ACC reached
95% for Freiburg DB and CHB-MIT for the separation of
ictal/interictal condition.

In addition, some researchers have studied the performance
of their methodology on one or two of the epileptic EEG
databases and on EEG data collected from a clinical environ-
ment (custom database). Table 6 contains all the methodolo-
gies that were tested on data from multiple databases.

IV. DISCUSSION
In this systematic review, we have analyzed studies published
between 2017 and 2022 (May) that propose a methodology
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TABLE 5. Studies that examine other databases.

for automated, Machine Learning epilepsy detection using
EEG recordings from published databases that are avail-
able to the public, either as open source or by paying.
190 studies were found that meet the eligibility criteria. From
these 190 studies, 125 studies were tested with EEG record-
ings from only one DB, while in the remaining 65 studies
the methodology was evaluated on more than one database
(multi-DB).

Even though different methodological approaches are pro-
posed, a common basic structure is followed in most of them
as represented in Fig. 3. First, the preprocessing step takes
place (or is already performed in the DB recordings), where
the EEG signals are filtered, and an artifact rejection method-
ology is performed/applied. In this step, the bandwidth is
limited and only frequencies with scientific interest to the
EEG interpretation are allowed, that being usually in the
range of [0.5-45] Hz. Also, in most studies the recordings are
segmented into fixed length time-windows, either after evalu-
ating the optimal window length or arbitrarily. Next, a signal
transformation (Frequency or TF or Non-Linear) may or may
not take place by employing well established methodologies

such as FFT or DWT and the signal is usually divided to
the 5 EEG rhythms namely Alpha, Beta, Gamma, Theta,
Delta (or some other study specific division). Following, the
feature extraction step takes place where the feature vector is
created. The feature vector may include features from more
than one domain (Time, Frequency, TF or Non-Linear). Some
studies also employ multiple TF transformations (such as
DWT along with STFT) and perform the feature extraction
step on all of them. Next, a feature selection methodology
is performed where the feature vector is reduced to the most
effective characteristics for classification or transformed with
a vector transformation such as Principal Component Analy-
sis (PCA). Finally, the proposedMachine Learning algorithm
is trained for one or more classification problems. The per-
formance results obtained from a validation technique such
as k-fold cross validation or leave-one-patient-out validation
[153] are then reported.

The scope of this study is to provide a systematic overview
of the methodologies and the databases used in the last
5 years, to facilitate as a reference point for researchers that
plan on proposing a new methodology for epilepsy detection.
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FIGURE 3. Basic structure of electroencephalography (EEG)-based epilepsy detection methodologies.

In the following paragraphs, issues regarding the selected
signal transformation methodology and the selected classifier
methodology will be discussed and percentage measures will
be presented. Furthermore, an analysis regarding the studies
with multiple databases will be performed and insights about
which databases are most commonly combined together will
be provided. Next, observations about specific DB character-
istics that should be noted from researchers for future studies
will be presented. Finally, a brief comparison of this system-
atic review with other related reviews regarding epilepsy will
be performed and the limitations of this methodology will be
discussed.

Regarding the Signal Transformation step, TF methodolo-
gies are far more popular among the examined studies, with
59.84% of them employing a TF transformation. According
to Morales et al. [27] TF advantage over other EEG meth-
ods is their interpretability because they provide more direct
information about the neurophysiological mechanisms of the
EEG data. Also, the capability of most TF decompositions
to transform the time domain signal to image makes them
suitable to be used along CNN implementations. The TF
that is most used is the DWT, which is used in the 43.8%
of the TF methodologies alone, as well as on the majority
of the studies that employ multiple TF transforms (being
13.7%). The more sophisticated Empirical Mode Decom-
position comes second, with usage percentage of 13.7%
while the STFT comes third with 12.3%. An interesting
observation can be made regarding the methodologies that
employ a combination of TF methodologies, that being the
increase in the population of them. Specifically, while only
7.1% of the TF related studies employed a combination of
TF during 2017-2019, this percentage has been significantly
increased during 2020-2022, reaching 17.8%. This indicates
the continuous effort of research teams to propose more
elaborate schemes for better epilepsy detection. Last but not
least, another observation that can be made by comparing
the percentages of 2017-2019 and 2020-2022 is that the
Raw-Signal methodologies have been increased significantly.

Specifically, 2 studies (4.1%) proposed a Raw-Signal scheme
in the former timeline while 9 studies (8.9%) proposed one in
the latter timeline. The reason behind this, is the increased
computational power that modern computer systems have,
especially regarding GPU performances, that make able to
operate complex Convolutional Neural Networks which take
as input Raw-Signal data and transform them using 1-D con-
volutional layers. Fig. 4 represents a chart of the popularity
of the Signal Transformation methodologies.

Regarding the Classification step, 50% of the classifiers
used in the previous 5 years were traditional Machine Learn-
ing classifiers (meaning SVM, kNN,Naïve Bayes etc, exclud-
ing Random Forests), with SVM being the most popular one,
being employed in 24% of the total studies (the best perform-
ing classifier was reported for studies that examined multiple
classifiers). Neural Networks were used in 40% of the total
studies with CNN being by far the most used implementation.
A detailed graph containing the popularity of each classifier is
presented in Fig. 5. However, when comparing the 2017-2019
and 2020-2022 percentages (Fig. 6), it can be observed that
the usage of Neural Networks has been doubled (25% to
50%), making them the most used classifier the last 2 years,
that are still gaining popularity. As mentioned in the previ-
ous paragraph, one reason of this change is the increase in
computational power. Finally, the least employed category of
Machine Learning algorithms in the EEG epilepsy detection
is the Ensemble learning. Only 10% of the studies proposed
an ensemble algorithm such as Random Forests, Gradient
Boosting or Extra Trees.

Regarding the classification performance of each algo-
rithm, it was evident that a direct comparison is impossible
for multiple reasons: a) the lack of a universal dataset for
every study. Even in studies conducted on the same DB,
the selection of EEG signals or subjects differs. b) The fact
that each study examines a different classification problem
(i.e., studies on the Bonn DB evaluate any combination of
Z-O-N-F-S). c) Methodology flaws may exist in some stud-
ies (such as overfitting), thus reporting higher performance
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FIGURE 4. Signal processing techniques that are applied in the reviewed methodologies.

FIGURE 5. Machine learning algorithms that are applied in the reviewed methodologies.

scores. d) Lack of an adequate number of studies with a
standard classifier, database and problem so that a rigorous
statistical evaluation of the classifier’s differences in perfor-
mance can be made.

Having mentioned all these constraints, a comparison of
the average accuracy scores for each algorithm is made in
Fig. 7., which is divided into three sub-figures, each contain-
ing the average accuracy scores of a different DB. For Bonn

DB, studies have been divided into three categories: Healthy-
Interictal-Ictal, Seizure Detection and Healthy-Interictal.
For CHB DB and Other DB figures, a single Seizure
Detection category has been explored. It should also be
noted that CNN has been examined separately from Neu-
ral Network studies due to its significance, as examined
in Fig. 5. Also, algorithms employed in less than two
papers were not included in this evaluation. As observed,

VOLUME 11, 2023 583



A. Miltiadous et al.: Machine Learning Algorithms for Epilepsy Detection Based on Published EEG Databases

FIGURE 6. Comparison of machine learning methodologies used in the 2017-2019 and the 2020-2022 period.

FIGURE 7. Average accuracies of different classifiers for each database.
Bonn DB studies are divided into 3 categories namely
Healthy-Ictal-Interictal, Seizure Detection and Healthy-Interictal.
Convolutional Neural Networks (CNN) is considered a different category
from neural networks.

CNN implementations achieved higher accuracies for Seizure
Detection and Healthy-Interictal problems in Bonn DB and
CHB DB. Also, Neural-Network implementations achieved

higher performance in the Healthy-Ictal-Interictal Bonn DB
problem and Seizure Detection CHB andOther DB problems.

With regard to the popularity of the available databases, the
DB of Bonn is by far the most examined DB. 46.8% of the
studies evaluate their methodologies using only the BonnDB.
Also, 72.31% of the studies that examine multiple databases
make use of the Bonn EEG recordings. In total, 71.5% of the
studies used the Bonn recordings. The usability and immedi-
ate availability of the DB, makes Bonn DB the main base for
the study of epileptic activity, during the ictal and interictal
period. A significant percentage of methodologies have been
applied to CHB-MIT long-time recordings, while Freiburg
DB, once one of the first choices of researchers, is no longer
preferred, possibly because it is no longer accessible for free.
A detailed overview of the databases used in the studies that
were examined in this review can be found in Fig. 8. The
left side of Fig. 8 represents how the studies are divided
based on what DB they use. The right side is only about
studies examiningmultiple databases. Each bar represents the
percentage of the multiple-DB studies that use a certain DB.

Fig. 9 represents a chord diagram in which the thickness of
a chord between DB A and B is proportionate to the percent-
age of studies that examined EEG recordings from both A
and B. The strong connection between Bonn and CHB-MIT
DB’s can be noted, since 47.7% of the multiple DB studies
contain the combination Bonn & CHB-MIT databases. Also,
the combination of Bonn DB and Neurology Sleep Center
DB is also notable, since 13.8% of the multiple DB’s studies
employ it. Finally, the combination of Freiburg DB and CHB-
MIT DB at 9.2% is the biggest collaborative DB scheme that
does not include Bonn DB. Table 7 represents the percentage
of multiple DB studies at which the DB at x axis and the DB
at y axis are combined.

All these machine learning models aim to provide intel-
ligent systems to assist the neurophysiologists’ task in the
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FIGURE 8. Left: Pie chart containing the employment percentages of each database in the reviewed studies. Right: Regarding the ‘‘Multiple Databases’’
studies, this bar chart represents the percentage of studies that examined a certain database.

FIGURE 9. Chord diagram representing which databases are co-examined
in the studies that examine multiple databases.

diagnosis of the life-threating epilepsy. Since there in no intel-
ligence without learning, a crucial aspect of these potential
systems is on which data the machine learning models are
trained on. The Bonn DB database is an extremely limited
database of about 3,5 hours recordings in total, consisting of
both scalp (i.e. sets Z, O) and intracranial (i.e. sets N, F, S)
EEG recordings. Undoubtedly, the electrical activity of the

brain obtained from the scalp and the one recorded directly
from the exposed brain region is totally different. Algorithms
trained on such data pose the greatest risk of profound errors
in the quality of the ML model and later on the development
of the system. Furthermore, the CHB-MIT DB consists of
EEG recordings from both pediatric and adult cases. It goes
without saying that there are significant differences in brain
maturation among pediatric and adult cases and at least
4 subjects of the CHB-MIT DB (Patients 4, 15, 18, 19) do
not meet age criteria to be considered pediatric cases. Thus,
the inclusion of the EEG data of these subjects in groups
with adult EEG recordings may mislead the classification
results. Taking all the above into account, it is of significant
importance machine learning models applied in all aspects of
medicine to be alignedwith themedical problem their dealing
with and not just present a ML model that may provide the
highest classification results but have no actual impact on the
medical problem.

A variety of comprehensive review papers have been pre-
sented during the 2021-2022 timeline exploring Machine
Learning EEG Epilepsy detection and recent advances on the
field. These studies are summarized in Table 8. None of the
mentioned studies have followed a PRISMA-based review
methodology to systematically evaluate EEG-based studies
that perform epilepsy detection. A brief report of the results
and limitations of these studies is presented in the following
paragraph.

Saminu et al. [154] limited their years of coverage to
2016-2021 and focused on methodologies taking advantage
of Computer Aided Devices that perform classification based
on EEG and/or MRI signals. However, this review was
not systematic and was focused only on the classification
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TABLE 6. Studies that examine multiple databases. TABLE 6. (Continued.) Studies that examine multiple databases.

algorithm usage percentages of the studies. Ahmad et al.
[155] published a systematic review, wherein no specific
search methodology was mentioned, and the years of cov-
erage were not reported. The authors focused on ML/DL
methodologies for EEG epilepsy detection but no exclusion
criteria was reported. The study was not adequately explained
and many conclusions about comparisons of performance
metrics between classifiers were vague due to lack of infor-
mation. In another review, Praveena et al. [156] presented a
short non-systematic review focusing solely on studies apply-
ing Deep Learning for EEG epilepsy detection. Moreover,
Supriya et al. [157] published a review that focuses on EEG
epilepsy detection studies that employGraph Theory schemes
such as Visibility Graph, Time Series Complex Network
and others. Lastly, Rasheed et al. [1] published a review of
the methodologies for automated prediction of seizures and
provided a timeline since the beginning of EEG epilepsy
prediction methodologies in 1970, also commenting on the
pitfalls of ML prediction methodologies.

The advantage of our review over other recently published
related reviews is that we systematically collected, analyzed
and evaluated experimental studies following the PRISMA
statement, providing useful insights for every stage of the
creation of an original methodology for EEG-based epilepsy
detection. Specifically, we present a detailed comparison of
public DB’s regarding their characteristics, their percentage
of employment on other studies and the combination between
them. Furthermore, we provide a detailed examination of the
Signal Transformation and Feature Extraction steps, evaluat-
ing which is used most and how these tendencies changed
after 2020. Likewise, we evaluate the Classification Step,
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TABLE 7. Each cell represents the percentage of studies that used axis x & axis y combination of databases, from the total of multiple database studies.

TABLE 8. A comparison of recent related review papers exploring EEG-based epilepsy detection studies.

providing details and visualizations about the increase in
popularity of the Neural Networks during the recent years.

In this point, it is important to mention the limitations of
this review. Firstly, the large number of studies examined
(190) made difficult to evaluate individually each imple-
mentation, so a detailed analysis of each pipeline was not
performed, but instead they were examined in a more general
format of distinct steps as presented in Tables 1-5. Further-
more, a systematic evaluation of different classifier perfor-
mances cannot be performed due to multiple reasons already
mentioned, so the comparison of accuracy scores performed
in this study is clearly indicative and should not be taken
for granted for the selection of the best methodology. Lastly,
the large number of studies existing on the EEG epilepsy
detection topic, obliged us to evaluate studies from a limited

timeline (2017-2022), thus not being able to effectively track
the methodology trends during time.

V. CONCLUSION
A systematic review of the published methodologies of the
last 5 years for automatic EEG epilepsy detection using
Machine Learning has been presented in this study. This
review is meant to be read by researchers in the EEG epilepsy
detection area that need to fill the literature gap regarding
the proposed methodologies of the latest years. The study
focused on the Signal Transformation methodologies and
the Classification Algorithms applied and evaluated which
is prevailing during the latest years. Furthermore, detailed
comparison and evaluation of the published epileptic EEG
databases has been performed. The PRISMA guidelines have
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been focused during the review process. This review con-
cluded on the following observations: 1) the future on auto-
matic epilepsy detection lies on methodologies that employ a
combination of Time-Frequency transformations to produce
images and feed CNN classifiers, as well as onmethodologies
that employ Neural Networks on raw EEG signal. Also, CNN
seems to outperform other classifiers regarding the Seizure
Detection and Healthy-Interictal problems. 2) the most pop-
ular database is Bonn DB, however more databases such as
Neurology and Sleep Center DB, Freiburg DB, Temple DB
provide more appropriate EEG recordings (meaning no com-
bination of scalp EEG and intracranial EEG) for classification
tasks and are increasingly employed in combination with
the most well-established Bonn and CHB-MIT databases.
3) limitations regarding each DB exist and are presented
shortly in the Discussion section.
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