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Introduction
Sleep is a fundamental restorative process for human mental 

and physical health [1]. The nightlong study of human sleep and 
sleep-related behaviors during the different sleep stages is essential 
in the diagnosis of sleep disorders. Sleep disturbance and disorders, 
such as the life-threatening Sleep Apnea Syndrome (SAS), can have 
devastating effects on both the quality of life and essential human 
activities, including learning and memorization. Monitoring the 
patient throughout the night sleep and identifying the alterations 
in sleep patterns, plays a significant role in the accurate diagnosis 
and in the implementation of the appropriate treatment plan. Sleep 
is a structured sequenced process comprised of five stages, which 
progress cyclically. The sleep-wake cycle consists of an awake stage, 
a non-rapid eye movement stage (NREM), which is further divided 
into transitional sleep (N1), light sleep (N2) and deep sleep (N3) 
stages, and then a rapid eye movement sleep stage (REM) [2]. The 
N3 stage sometimes is considered as two separate stages (N3 and 
N4) and it is referred as slow wave sleep [3]. Monitoring of these 
different stages through use of recorded neural, respiratory, and 
cardiac activity during sleep, can provide an assessment of sleep in 
patients suffering from sleep disorders. 

Sleep stages are characterized by standardized manual scoring. 
Sleep scoring was previously accomplished using the standard 
human sleep scoring methods proposed by Rechtschaffen and Kales 
[4], which were then used as a basis for the new criteria on sleep 
staging, determined by The American Academy of Sleep Medicine 
(AASM) [5]. These methods allow for analysis of sleep disorders 
but suffer from expensive and convoluted procedures, as well as 
inefficient manual scoring that can be subjective, as scoring results 
and conclusions differ between experts [2]. Accurate and efficient 
automatic sleep staging, in order to improve sleep evaluation for 
the diagnosis of sleep disorders, is therefore of great significance 
today. One of the methods currently used to monitor and score sleep 
is polysomnography (PSG). PSG entails simultaneous recording 
of multiple physiological signals, such as electroencephalogram 
(EEG), electrocardiography (ECG), electromyography (EMG), 
electrooculogram (EOG), oxygen saturation (SpO2), and respiration, 
of a patient asleep over a full night [6]. Subsequently, the recordings 
are split into short periods of time (30s), called epochs, which are 
then categorized into the different sleep stages. The procedure 
usually takes place in a well-equipped hospital, by an experienced 
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sleep specialist who reviews the PSG recordings and detects the 
sleep-related patterns. 

Categorizing these epochs can be done using EEG waves and 
the characteristic differences in several frequencies (EEG rhythms) 
observed at each sleep stage. The low frequency band (delta) 
contains EEG waves of 0.5-4Hz frequency. Theta waves are between 
the frequencies of 4-8Hz and alpha between the frequencies of 
8-13Hz. There are also beta frequency waves (13-35Hz), which 
are further discriminated into beta 1 waves (13-22Hz) and beta 2 
waves (22-35Hz). Special categories of waves, which can be found 
in the EEG sleep recordings and are characteristic of the sleep stage, 
are the K-complexes (0.5-1.5 Hz) and the sleep spindles (12-14Hz). 
The awake stage includes low amplitude mixed frequency waves, 
whereas the N1 stage has dominant alpha waves. The N2 stage has 
sleep spindles and k-complexes, whereas the N3 stage has delta 
waves and the REM stage has sawtooth waves [7].

Electroencephalogram (EEG) is a cost-effective and typically 
a non-invasive method for monitoring and recording of electrical 
signals and voltage fluctuations from neurons in the brain, using 
electrodes attached to the scalp of a patient. These sensors allow 
for measurement of signals, which can be recorded over a long 
period of time, such as during sleep. EEG can therefore give 
great insight into the neural activity of a patient, with the aim of 
analyzing and evaluating the quality of sleep, in order to provide 
treatment and resolve health problems associated with sleep 
disorders. It also allows for potential automation, resulting in 
automatic sleep scoring to an accurate level with the aim of having 
a less arduous and objective sleep evaluation. The study of all-
night sleep and sleep patterns analysis has gained the research 
interest over the past years. Methods for automatic sleep staging 
classification (ASSC) have been evaluated in datasets from various 
sleep centers. The most well-known databases that have been 
widely utilized throughout the years are the database provided 
by Physionet [8] containing PSG recordings from 20 subjects, the 
Siesta Sleep Database, which comprises PSG data from 300 subjects 
(100 subjects with sleep disorders and 200 healthy) [9] and the 
ISRUC-sleep Dataset of 118 subjects, which is used in this study and 
is subsequently analyzed [3]. 

Several methods have been proposed based on the PSG 
recordings by Physionet [6,10,11] or by the Siesta dataset [12-14]. 
Concerning the ISRUC database, few studies have been proposed 
[2,3,15-17] that either used the maximum overlap Discrete Wavelet 
Transform (MODWT) for signal decomposition [2,15,17] or filters 
[16] and extracted an extensive set of features.  Then, the most 
discriminative features were selected and used to train a Support 
Vector Machines (SVM) [2,3,15,17] or a Bayesian classifier [16]. In 
this paper, an EEG-based method for classification of sleep stages 
is presented. The method evaluates the energy of the EEG rhythms 
from the ISRUC sleep Dataset in order to train several classifiers and 
discriminate the 5 stages of sleep. Results for the 5-class problem 
are presented. 

Materials and Method
The proposed method consists of two stages: feature extraction 

and classification in 5 classes. Digital FIR filters are applied to 

EEG recordings, obtained from 100 patients, aiming to extract the 
energy in each sub-band. Then, the extracted feature vector is used 
to train and test several classifiers. The filter design and feature 
extraction steps are implemented using MathWorks MATLAB 
platform, whereas the classification step is performed with the 
Waikato Weka software. A flowchart of the proposed method is 
presented in Figure 1.

Figure 1: Flowchart of the proposed methodology.

Dataset
The dataset used for this work is the ISRUC-Sleep dataset [3]. 

The dataset contains polysomnographic data collected during the 
night sleep for about eight hours, creating three groups of data; 

a) 100 adults with sleep disorders evidence and one 
recording per subject 

b) 8 adults with sleep disorders evidence and two recordings 
per subject and

c) 10 healthy subjects and one recording per subject. Data 
collection was performed in the Sleep Medicine Centre of the 
Hospital of Coimbra University, according to the suggestions of 
the AASM manual. Each PSG recording consists of signals from 
19 channels, containing EEG, EOG and chin EMG signals. Each 
signal was sampled at 200Hz and was segmented into epochs 
of 30sec. Two different sleep experts evaluated the recordings 
and performed the staging according to the AASM guidelines. 
A comprehensive report of the dataset is presented in [3]. In 
this methodology, the group of 100 subjects is employed and 
only the EEG signals of each patient is used in the experiments. 
Hence, 6 EEG channels (F3-A2, C3-A2, O1-A2, F4-A1, C4-A1 
and O2-A1) are extracted and the energy of each sub-band per 
signal is calculated. Also, the staging according to the evaluation 
of the one sleep expert is followed. In Table 1 the total number 
of epochs of each stage (87187 epochs in total) is shown. In 
Figure 2 the first 30-sec epoch of each EEG channel for Patient 
1 is presented.

Table 1: Total Number of 30sec epochs for each class.

Awake N1 N2 N3 REM

Number 
of epochs 20104 11104 27398 17325 11256
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Figure 2: Example of a 30sec epoch for each channel 
acquired from Patient 1.

Feature Extraction
In order to extract data in the different frequency sub-bands, 

FIR filters are designed and applied to each EEG signal.  Therefore, 
a low-pass (0-4Hz), a high-pass (30-60Hz) and three band-pass 
filters (4-8Hz, 8-13Hz and 13-30HZ) are designed and the energy 
is extracted in each sub-band of interest, corresponding to the 
EEG rhythms. Since each EEG signal contains information from 6 
channels, a feature vector of 30 characteristics (5 sub-bands * 6 
channels) is used as input to train the classifiers.

Classification
To evaluate the proposed method for automatic sleep staging, 

five well-known classifiers are used. 

Naive Bayes
Naïve Bayes [18] is a simple classifier that combines a 

probability model with a decision rule. The classifier operates 
on the basic assumption that the features comprising the feature 
vector are statistically independent. Naïve Bayes is based on Bayes 
decision theory and the purpose is the minimization of classification 
error probability and the maximization of posterior probability. 
The classifier adopts the Gaussian assumption, meaning that each 
marginal is described by two parameters (mean and variance), 
reducing computational complexity and the need for data. A small 
number of training data is needed for the classifier to estimate the 
necessary classification parameters, avoiding overfitting, making 
the Naïve Bayes suitable for complex classification problems.

Decision Tree
A Decision Trees classifier is based on a set of decision rules. 

The tree root node is at the top and is connected with other nodes 
through links or branches. The procedure is repeated until no 
further links exist to connect to other nodes.  

According to the architecture of the classifier, only one link 
can be followed each time and the following node becomes the 
root node of the next sub-tree until no other decision can be made. 
Hence, Decision Trees is a straightforward classifier [19].

K-Nearest Neighbor
The k-Nearest Neighbor [20] is a supervised, non-parametric 

instance-based method and one of the simplest machine learning 
algorithms used for classification. According to this method, an 

instance is classified to the most relative class depending on the 
vote its k nearest neighbors. This approach is a good technique 
when there is little or no knowledge of the distribution of the data.

Support Vector Machines
Support Vector Machines [21] is a technique for linear and non-

linear classification problems. The input features are represented 
into a high-dimension (usually much higher than the original) 
feature space aiming to be linear separated. This projection is 
performed by the kernel function. The gap that separates the data 
is called decision hyperplane and the distance from the hyperplane 
is named margin. The goal in training an SVM is to find the optimal 
separating hyperplane with the largest margin, leading to better 
generalization of the classifier. In our experiments, the radial basis 
function is used as kernel function.

Random Forests
Random Forests [22] is an ensemble learning method for 

classification that operates by combining decorrelated decision 
trees. The ultimate goal of the classifier is to decrease the 
generalization error and improve accuracy. In Random Forests 
the trees are grown by randomly selecting at each node a group of 
features to determine the split. The feature set is sub-decomposed 
into subsets of random values. These subsets are used to train and 
test each individual decision tree. After a large number of trees is 
generated, they vote for the most popular class. In our experiments, 
100 decision trees is selected. 

Results
The 10-fold cross-validation technique is employed to train 

and test the five classifiers. The performance of each classifier is 
depicted in Table 2, in terms of True Positive (TP) rate (average 
for all classes), precision (average for all classes) and accuracy. 
The best classification accuracy is obtained from the Random 
Forests (75.29%) followed by Support Vector Machines, k-Nearest 
Neighbor, Decision Tree and Naïve Bayes. (66.59%, 65.61%, 64.77% 
and 55.97% respectively). Table 3 presents the confusion matrix 
for the Random Forests classification, which as can be seen from 
Table 1 indicated the best classification accuracy. The percentage of 
classified instances for each class (row) is calculated and depicted 
in the table, thus the main diagonal includes the TP rate of each 
respective row class, while all other values in the same row are the 
misclassification rates of this class to all other classes. The confusion 
matrix that is presented in Table 3, gives a thorough description of 
the classification. The percentage of N1 epochs correctly classified 
by as N1 is less than 50% while the majority of the instances were 
classified as N2 (37.63%), Awake (19.29%) and REM (11.10%). 
Also, epochs of REM sleep are misclassified as N2 (22.27%), N1 
(6.96%) and Awake (5.91%), leading to a total accuracy for the REM 
stage equal to 63.50%. The percentages of correctly classified N2 
and N3 epochs are above 80% (82.78% and 81.82% respectively) 
and the majority of errors is due to misclassified epochs as Awake 
(26.10%) and N2 (17.12%) respectively. The best discrimination, 
matching with the scoring assigned by the expert, is provided with 
epochs of Awake stage (90.43%).
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Table 2: Results of sleep staging for the 5 classifiers in terms of accuracy.

Metric Naïve Bayes Decision Tree K-Nearest Neighbor Support Vector Machines Random Forests

TP rate (average) 52.73% 62.44% 61.01% 59.35% 69.94%

Precision (average) 52.36% 62.49% 61.04% 62.53% 73.54%

Accuracy 55.97% 65.61% 64.77% 66.59% 75.29%

Table 3: Results of sleep staging for the 5 classifiers in terms of accuracy.

Predicted values

Awake N1 N2 N3 REM

Dataset

AWAKE 90.43% 4.74% 3.47% 0.22% 1.13%

N1 19.29% 31.14% 37.63% 0.84% 11.10%

N2 2.61% 4.17% 82.78% 7.20% 3.24%

N3 0.94% 0.06% 17.10% 81.82% 0.08%

REM 5.91% 6.96% 22.27% 1.36% 63.50%

Discussion
In this work, an EEG-based method for 5-class automatic 

sleep staging is presented. The EEG signals from the ISRUC Sleep 
Database of 100 subjects with evidence of sleep disorders are 
extracted from PSG recordings and utilized for the analysis. FIR 
Filters are applied to the EEG signals, extracting the EEG rhythms. 
Then, the energy from each sub-band is used to train several 
classifiers aiming to discriminate the five stages of sleep. Table 1 
shows the obtained results for the five classifiers described above. 
The best classification accuracy (75.29%) is obtained with Random 
Forests. Concerning the errors in classification of each sleep stage, 
the misclassification problems are mainly related to epochs N1 and 
REM, as can be also confirmed by previous studies [2,3,16,17]. This 
error is mainly observed due to the similarity between the EEG 
patterns presented in Rapid Eye Movement stage and N1 stage 
(slow eye movement) [16]. Furthermore, the applied FIR filters 
decompose the EEG signals into specific frequencies of interest that 
correspond to the EEG rhythms. 

However, the maximum overlap Discrete Wavelet Transform, 
which is proposed in previous studies [2,15,17] decompose the 
signal depending on the sampling frequency into frequencies that 
correspond approximately to EEG rhythms. (e.g. the sub-band 
related to alpha rhythm is 6.25-12.5Hz with MODWT instead 
of 8-13Hz). Since the sleep stages are characterized by specific 
patterns found to certain EEG rhythms, a filter-based approach 
seems more appropriate. To the best of the authors’ knowledge, 
only one previous study [3] has utilized the total of 100 subjects 
with evidence of sleep disorders. Previous studies have been 
validated only in a small number of the entire dataset (14 subjects 
[15] and 40 subjects [2]). Also, in the proposed approach only the 
EEG channels of the recordings are used. However, most of the 
previous studies [2,3,15,17] utilized EOG and chin EMG signals in 
combination with EEG signals to provide the best classification 
results. Hence, greater accuracy values in previous studies can be 
partially explained due to the smaller number of subjects involved 
in the experiments and the combination of EEG signals with EOG 
and EMG (Table 4).

Table 4: A Comparison of performances of the various methods proposed in the literature that have utilized the ISRUC Sleep Dataset 
for automated sleep staging.

ASSC Study Data Sub Feature 
extraction

Frequency 
Bands Features Classifier Accuracy

Hugo 
Simoes [16] EEG 7 Filter and 

segmentation

0.5-2.0

2.0-4.0

4.0-6.0

6.0-8.0

8.0-10.0

10.0-12.0

12.0-14.0

14.0-16.0

16.0-25.0

25.0-35.0

Relative spectral power, slow wave index, Hjorth 
parameters, entropy, skewness, kurtosis, harmonic 

parameters

Bayesian 
Classifier 83.00%
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Khalighi et 
al. [15]

EEG 
and 
EOG

14

Maximum 
Overlap 
Discrete 
Wavelet 

Transform

0-3.125

3.125-6.25

6.25-12.5

12.5-25

25-50

Skewness, kurtosis, Renyi entropy, Tsallis entropy, 
Shannon entropy, slow wave index, autoregressive coef., 
peak to peak amplitude and Energy, Percent of energy, 

mean, standard deviation, relative spectral power, 
harmonic parameters, Hjorth parameters, percentile 

(20,50,75)

Support 
Vector 

Machines
93.00%

Khalighi et 
al. [2]

EEG, 
EOG 
and 
EMG

40

Maximum 
Overlap 
Discrete 
Wavelet 

Transform

0-3.125

3.125-6.25

6.25-12.5

12.5-25

25-50

Entropy and Energy, Percent of energy, mean, 
standard deviation, relative spectral power, harmonic 
parameters, Hjorth parameters, percentile (20,50,75)

Support 
Vector 

Machines
81.74%

Khalighi et 
al. [3]

EEG, 
EOG 
and 
EMG

100

Maximum 
Overlap 
Discrete 
Wavelet 

Transform

0-3.125

3.125-6.25

6.25-12.5

12.5-25

25-50

Entropy and Energy, Percent of energy, mean, 
standard deviation, relative spectral power, harmonic 
parameters, Hjorth parameters, percentile (20,50,75)

Support 
Vector 

Machines
93.97%

Sousa et al. 
[17]

EEG, 
EOG 14

Maximum 
Overlap 
Discrete 
Wavelet 

Transform

0-3.125

3.125-6.25

6.25-12.5

12.5-25

25-50

Skewness, kurtosis, Renyi entropy, Tsallis entropy, 
Shannon entropy, slow wave index, autoregressive coef., 
peak to peak amplitude and Energy, Percent of energy, 

mean, standard deviation, relative spectral power, 
harmonic parameters, Hjorth parameters, percentile 

(20,50,75)

Support 
Vector 

Machines
86.75%

This method EEG 100 FIR filters

0-4

8-Apr

13-Aug

13-30

30-60

Energy Random 
Forest 75.29%

Conclusion
Sleep studies are usually performed for the diagnosis of sleep-

related pathologies. Sleep scoring is performed by sleep experts who 
review the polysomnographic recordings and obtain the different 
sleep stages. Scientific research has been focused on automatic 
sleep staging classification, aiming to assist the sleep experts in 
sleep scoring and hence, in identification of sleep disorders. In this 
work, an EEG-based method for automatic sleep stage classification 
based on the energy extracted from the EEG rhythms is presented 
FIR filters were applied to EEG signals to extract the frequencies of 
interest and results showed 75.29% accuracy with Random Forests. 
In the future, more features will be examined and the ability of 
several feature selection methods will be evaluated. 
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