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Abstract
Drug inefficiency in patients with refractory seizures renders epilepsy a life-threatening and challenging brain disorder and
stresses the need for accurate seizure detection and prediction methods and more personalized closed-loop treatment systems.
In this paper, a multicenter methodology for automated seizure detection based on Discrete Wavelet Transform (DWT) is
presented. A decomposition of 5 levels is applied in each EEG segment and five features are extracted from the wavelet
coefficients. The extracted feature vector is used to train a Random Forest classifier and discriminate between ictal and interictal
data. EEG recordings from the database of University of Bonn and the database of the University Hospital of Freiburg were
employed, in an attempt to test the efficiency and robustness of the method. Classification results in both databases are significant,
reaching accuracy above 95% and confirming the robustness of the methodology. Sensitivity and False Positive Rate for the
Freiburg database reached 99.74% and 0.21/h respectively.

Keywords Bonn EEG database . Discrete wavelet transform (DWT) . Electroencephalogram (EEG) . Epileptic seizure .
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1 Introduction

Epilepsy is a brain disorder caused by recurrent episodes of
abnormal electrical discharges of the neurons, called seizures.
This neurological disorder engrossed much of the research at-
tention over the last decades owing to the complexity and the
severity of the seizure events. Despite the enormous break-
throughs that have been achieved, there are more than 30% of
the epileptic patients who experiences uncontrolled seizures,
even with the use of anticonvulsant medications [1].
Therefore, epilepsy is a dreadful neurological disorder,

considered as significant culprit of mortality in developed as
well as developing countries [2].

Generally, epileptic seizures are divided into two funda-
mental types based on the brain areas that are activated during
seizures: partial and generalized. Partial seizures arise from a
single brain area and remain only to one cerebral hemisphere,
whereas generalized seizures involve the entire brain [3]. The
diagnosis and monitoring of the seizures is done through the
electroencephalogram (EEG), which records the brain activity
through electrodes that are either attached to the scalp (scalp
EEG - sEEG) or placed invasively inside the brain (intracra-
nial EEG -iEEG). In general, the clinical EEG recording is
performed between two seizures (interictal period) and seldom
during a seizure (ictal period).

Experienced epileptologists have to examine a vast amount
of data for the diagnosis of epilepsy. The visual analysis of the
EEG recording that often lasts several hours is usually a time-
consuming and eventually a laborious undertaking. In the lit-
erature, there is an abundance of methodologies for automated
seizure analysis, aiming to assist in the epileptologist’s task.
The main groups of studies focus on automated seizure detec-
tion, automated seizure prediction and seizures origin locali-
zation [4], towards developing novel intervention systems.
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The majority of these methodologies concur with a two-stage
procedure, following a pattern recognition approach: feature
extraction and classification.

Methods for automated seizure detection have been evalu-
ated in databases from various epilepsy centers. The most
well-known databases that have been widely utilized through-
out the years are the database of the University of Bonn and
the database of the Epilepsy Center of the University Hospital
of Freiburg. The database of the department of Epileptology
of the University of Bonn is the most common dataset and
consists of scalp and iEEG signals that have been recorded
from 5 healthy and 5 epileptic patients. These long-term EEG
recordings were cut off forming 5 different sets of 100-single
signals of 23.6 s duration each. On the other hand, the data-
base of the Epilepsy Center of the University Hospital of
Freiburg is a high-quality dataset that contains continuous
long-term iEEG recordings (1 h) acquired with 6 channels
from 21 patients during pre-surgical examination. This data-
base provides more information about the patients (age, sex,
seizure origin) and is closer to clinical EEG recordings. The
databases are thoroughly described in section III.

In this paper, a multicenter, wavelet-based method for au-
tomated seizure detection is proposed. The Discrete Wavelet
Transform is used to divide EEG recordings to specific bands
of interest and extract several features. Then, these features are
used as input to a Random Forest classifier. The method is
evaluated on the database of the University of Bonn and the
database of the Epilepsy Center of the University Hospital of
Freiburg, and the obtained results indicate the robustness of
the proposed approach.

2 Related work

The database of University Hospital of Bonn is the most wide-
ly used database in the literature. Time-Frequency analysis
methods [5] like Wigner-Ville distribution [6], Empirical
Mode Decomposition [7, 8] and Local Mean Decomposition
[9] have been proposed to analyze the EEG signals in frequen-
cy bands of interest and then, to calculate linear and non-linear
features. Wavelet Analysis is constantly gaining ground and a
majority of studies have preferred to develop their methodol-
ogy based on Wavelet Analysis. Discrete Wavelet Transform
[10–12], Wavelet Packet Decomposition [13, 14], Dual-Tree
Complex Wavelet Transform [15, 16] and Tunable-QWavelet
Transform [17, 18] have been used extensively during the last
decade. Apart from Time-Frequency Analysis studies,
methods for extracting features based on Information Theory
[19] and Entropies [20] have also been proposed.

A wide group of methods have been evaluated with the
database of the University Hospital of Freiburg. Different
methodologies have been proposed and the Wavelet
Analysis has been adopted by many researchers. Particularly,

the Discrete Wavelet Transform was preferred among other
techniques [21–24]. Empirical Mode Decomposition [25],
Fractal Analysis [26] and Fuzzy systems [27] have also been
employed in many scientific studies and have reported ade-
quate results in the detection of the subtle changes of the EEG
recordings. Furthermore, Independent Component Analysis
(ICA) and Principal Component Analysis (PCA) [28] have
also played a significant role on seizure detection studies.

Despite the fact that there is a tremendous number of re-
search studies, which have been validated on EEG signals
from one epilepsy center, there are still few methodologies
evaluated on more than one database. In 2012, a wavelet-
based sparse functional linear model was proposed by
Shengkun Xie and Sridhar Krishnan [29]. The EEG signals
from the database of the University of Freiburg were initially
segmented in epochs of 4096 samples and then the wavelet
variances were calculated. Three classifiers namely k-Nearest
Neighbor, Fisher’s linear discriminant (FLD), and Support
Vector Machines (SVM) were tested. The proposed method
was evaluated on the database of University of Bonn and on 4
patients (8 h of analysis) of the database of Epilepsy Center of
University Freiburg, reaching high levels of accuracy for six
classification problems and 0.9789 of the geometric mean for
the ictal-interictal problem, respectively.

Recently, the same group of researchers proposed a differ-
ent approach for epilepsy diagnosis and epileptic seizure de-
tection [30], based on dynamic principal component analysis
(DPCA) and nonoverlapping moving window. PCAwas used
as a dimension reduction method and applied to both short-
term and long-term EEG recordings. Initially the non-
overlapping moving window technique was applied. The au-
thors estimated various time lengths of EEG segments and
resulted in 512 samples length for the database of University
of Bonn and 1280 samples for the database of University of
Freiburg. The first few principal components combined with
the signal energy was used as the feature extraction technique
and the one Nearest Neighbor (1-NN) classifier was chosen to
discriminate the 3 classification problems: two (Z-S, ZONF-
S) for the Bonn database and one (ictal-interictal) of 2 patients
(Patient 1 and Patient 3) for the Freiburg database.

A comprehensive study [31] proposed in 2014 to discrimi-
nate ictal from interictal recordings. The authors tested the
effectiveness of four feature extraction methods (Discrete
Cosine Transform (DCT) with energy and entropy, Discrete
Wavelet Transform (DWT) with STD, Empirical Mode
Decomposition (EMD) with STD, Singular Value
Decomposition (SVD) with energy and STD) in the Freiburg
database. The features were extracted from the higher frequen-
cy components and the feature vector (of each approach) was
given as input to a Least Square Support VectorMachines (LS-
SVM). Ictal (200 signals) and interictal (800 signals) record-
ings that obtained from temporal and frontal lobe, were used to
evaluate the proposed methods. In order to validate their
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results, the authors applied the method proposed by Varun
Bajaj and Ram Bilas Pachori [32] on the Freiburg database.
In this method, the EMD was applied on the EEG segments of
the Bonn database. Bandwidth features namely amplitude
modulation bandwidth and frequency modulation bandwidth
were extracted and was used to train a LS-SVM classifier.
Results in terms of accuracy, sensitivity and specificity for
the two-class problem (ZONF-S) were above 94%. However,
the method was evaluated on the Freiburg database by Parvez
& Paul and the obtained results were not so promising.

In a more recent approach [33], the aforementioned group
of researchers proposed two methods: i) based on DCT and
energy and ii) based on EMD and STD. In the first method,
the energy of high-frequency coefficients was calculated
whereas in the second the standard deviation. In both cases
the set of features was fed into a LS-SVM classifier. To eval-
uate their method on Freiburg database, 3 min from ictal and
3 min from interictal activity were acquired from 12 patients
suffering from temporal and frontal lobe seizures. In some
cases, the authors included the pre-ictal activity to cover a 3-
min ictal period. The evaluation on the Bonn database was
done for the classification problem ZONF-S and results in
terms of accuracy, sensitivity and specificity was above 94%
for both of the databases.

3 Method

The proposed methodology consists of three main steps: (i)
signal analysis with Discrete Wavelet Transform, (ii) feature
extraction, and (iii) classification with Random Forests. In the
first step, a Discrete Wavelet Decomposition of 5 levels was
applied, dividing each signal into several frequency sub-bands.
Subsequently, five linear and non-linear features were extract-
ed from each wavelet sub-band forming the feature vector.
Finally, the set of features was used to train a Random Forest
classifier. The method was evaluated using the University of
Bonn database and the University of Freiburg database.

3.1 Wavelet analysis

Wavelet Transform is a Time-Frequency technique that em-
ploys mathematical functions to detect sharp signal transitions
like epileptic spikes. Over the past few years, various research
groups have shown a rising preference among other tech-
niques due to its attractive properties in both frequency and
time domain.

According to the Wavelet Analysis [34], the signal can be
decomposed into sub-signals of half size and spectrum over
dilating and translating a single function, usually in powers of
two to ensure orthogonality. This function is called mother
wavelet. The Discrete Wavelet Transform (DWT) is imple-
mented with a pair of quadrature mirror filters, described as

conjugate high-pass and low-pass filters. A series of decompo-
sition levels is required to analyze the entire signal. In the first
level, the input signal is simultaneously passed through the pair
of filters. The obtained sub-signals are called wavelet coeffi-
cients. The coefficient of the low-pass filter is named approx-
imation and is sub-decomposed, whereas the coefficients of the
high-pass filter, namely detail, are not. The procedure is recur-
sively repeated until the entire signal is decomposed, forming a
single-side, pyramid-like architecture.

The number of decomposition levels and the mother wave-
let is of high importance in DWT. In this work, a 5-level
decomposition was chosen based on the dominant frequency,
aiming to separate and reveal the frequency bands of impor-
tance that cover the seizure activity. The mother wavelet was
selected after manual examination mainly among the
Daubechies wavelets and the Daubechies of order 4 was the
most appropriate to analyze the EEG recording. The resulting
decomposition levels with the corresponding frequencies for
both databases are presented in Table 1.

3.2 Feature extraction

In the literature, a variety of linear and non-linear detection
methods have employed one or more features to acquire dif-
ferent attributes of the signal. In this study, the feature vector
as extracted from each of the wavelet sub-bands consists of:

& The energy of the coefficients in each wavelet sub-band,
& The entropy of the coefficients in each wavelet sub-band

as calculated from the signal histogram and the Probability
Density Function (PDF)

& The standard deviation, the variance and the mean of the
absolute values of the coefficients in each wavelet sub-band

The feature vector was subsequently used to train a Random
Forests classifier. This low-dimensional feature vector showed
great performance in detecting seizures in a previous study
[35].

Table 1 Wavelet decomposition levels with the corresponding
frequencies for the database of the university of Bonn (173.61HZ) and
the database of the university of Freiburg (256HZ) – (D1-D6: Details, a:
approximation)

Decomposed signal Frequency range for
the Bonn database (Hz)

Frequency range for the
Freiburg database (Hz)

D1 43.4–86.8 64–128

D2 21.7–43.4 32–64

D3 10.8–21.7 16–32

D4 5.4–10.8 8–16

D5 2.7–5.4 4–8

A5 0–2.7 0–4
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3.3 Classification with Random Forests

The classification with Random Forests was chosen based on
recent findings from a previous study, wherein the Random
Forests showed better classification results compared to Naïve
Bayes, Decision Tree, k-Nearest Neighbor and Support Vector
Machines [36].

The basic idea underlying Random Forests is that a com-
bination of decorrelated decision trees can produce improved
accuracy. Trees are grown in binary partitioning using ran-
domly selected features at each node to determine the split.
In detail, the feature set is sub-divided into individual subsets
of instances with random values, creating the training and
testing set for each decision tree, rendering each tree respon-
sible for its own prediction. After a large number of trees is
generated, they vote for the most popular class [37]. In the
experiments, 100 decision trees were selected and the 10-fold
cross-validation technique was employed. Different number
of trees was also tested; however, the classification accuracy
was not significantly improved.

On the basis of the previous study [35], which has been
evaluated on the database of the University of Bonn, the high
frequency bands that correspond to the detail coefficients of
the 1st and the 2nd level of decomposition (D1 and D2), were
included in the final feature vector. However, the database of
the University of Freiburg is more complex and with enor-
mously more data instances. In an attempt to decrease the
complexity and the computational time, the high frequency
bands D1 and D2 of secondary importance were excluded
from the final feature vector.

4 Datasets and results

4.1 University of Bonn database

The database of University of Bonn [38] consists of five sub-
sets, denoted as Z, O, N, F and S obtained from five healthy
volunteers and five individuals suffering from epilepsy.
Subsets Z and O are composed of scalp EEG segments ac-
quired from healthy volunteers, who were relaxed and awake
with eyes closed and opened, respectively. The subsets N, F
and S are composed of intracranial EEG segments taken from
five epileptic patients during evaluation before surgery. In
detail, subset N includes interictal iEEG segments derived
from the epileptogenic zone of the opposite hemisphere
whereas subset O includes interictal iEEG segments acquired
from the epileptogenic zone. The subset S comprises iEEG
acquired from the epileptogenic zone during seizure activity.
Each subset contains 100 single-channel EEG segments of
23.6 s duration (4096 samples). The sampling frequency of
the data is 173.61 Hz and any artifacts due to muscle activity
or eye movement were isolated and removed by the database

owners after visual inspection. The epileptogenic zone was the
hippocampal formation and no further information about the
patients is provided.

To evaluate our methodology, each recordingwas segment-
ed in epochs of 2 s (347 samples) with no overlap, leading to
1100 segments for each subset (5500 in total). Seven different
classification problems were conducted as suggested in [39] to
discriminate different brain states. These seven classification
problems (ZONF-S, Z-S, NF-S, F-S, ZO-NF-S, Z-F-S and Z-
O-N-F-S) are addressed in the majority of epileptic seizure
studies when the Bonn database is involved.

4.2 University hospital of Freiburg Epilepsy Center
database

The database of Epilepsy Center of University of Freiburg
[40] comprises invasive long-term continuous EEG record-
ings obtained from 21 patients (8 male – 13 female) suffering
from uncontrolled partial epilepsy. Each EEG recording is
sampled at 256 Hz and is acquired from six intracranial
EEG channels (three focal and three extra-focal electrodes).
The data are discriminated into ictal (seizure onset and end are
provided), preictal and interictal activity. In most cases, the
recording duration is one hour. For each patient, two to five
seizure episodes are recorded, lasting from some seconds to a
few minutes, composing a dataset of 88 seizures.

In this work, an equal number of ictal and interictal record-
ings from all 21 patients were utilized. Two seizures from
Patient 1 and one seizure from Patient 7 were excluded from
the analysis due to technical issues: from Patient 1, the first
seizure is interrupted during recording and the second has
incorrect seizure end, while the seizure from Patient 7 was
excluded due to corrupted data in the 5th channel. Thus, the
total number of seizures included in the analysis is 85 (from 88
total).

Initially, the ictal and interictal EEG recordings of each
patient were divided into epochs of 2 s (512 samples) with
no overlap, leading to 1800 segments for each period per
patient. Since the seizure duration ranges from 4.21 s to
1071.5 s, a 2-s-long windowwas chosen, aiming to accurately
capture the seizure activity of all patients. The ictal segments
between the seizure onset and seizure end, were selected,
while the two segments for each seizure, that contain the sei-
zure onset and end, were excluded from the analysis. The
selected segments formed the Bictal^ class, which contains
the total seizure activity of each patient.

With regard to the interictal segments, a certain number of
segments from different interictal recordings of each patient
was chosen: for each patient a number of interictal segments
were chosen so as the ratio of interictal to ictal segments being
10 to 1. This was made since interictal activity is dominant,
and the dataset would be greatly unbalanced if all interictal
segments were included in the study. These segments were
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used to form the class Binterictal^ for each patient. Table 2
presents the EEG data for each patient. In total, 28.6 h of data,
being 2.6 h ictal and 26 h interictal, from the database were
included in the analysis.

To evaluate the detection performance of the proposed
methodology sensitivity, specificity and accuracy were calcu-
lated. For multiclass problems (from Bonn database), sensitiv-
ity and specificity are the average values for all classes. The
obtained results in terms of overall accuracy, sensitivity/
average sensitivity and specificity/average specificity, for the
Bonn and Freiburg databases are described in Table 3.

5 Discussion

In this work, a wavelet-based methodology that has been eval-
uated on two well-known EEG databases, is presented.
Discrete Wavelet Transform of 5 levels were applied to EEG
data to decompose the signals in six bands of interest. Five
typical characteristics namely energy, entropy, standard devi-
ation, variance and mean of the absolute values were calculat-
ed from each wavelet coefficient, creating the feature vector
that trained a Random Forest. EEG recordings from the

database of University Bonn and the University Hospital of
Freiburg were employed to test the robustness of the method.

The proposedmulti-dataset methodology shows significant
results in the detection of seizure activity for both databases.
As the work by Parvez & Paul [31] indicated, a methodology
designed and successfully tested into a specific database does
not guaranty its robustness into a different dataset; in [31], the
methodology presented by Bajaj & Pachori [32], which
showed excellent results when applied to Bonn database,
was validated in the Freiburg database, indicating significant
reduction in the obtained results. A comparative study with
other approaches that used both the Bonn and the Freiburg
database proposed in the literature is presented in Table 4;
for a direct comparison to be feasible, only methods tested
in both databases are included, since approaches validated
with one of the two databases have yet to demonstrate their
robustness with other datasets.

The ZONF-S classification problem is the only common
from the Bonn database, in all approaches presented in
Table 4. For this problem, all researchers reported outstanding
results, ranging from 95 to 100% for classification accuracy.
The methodology presented by Xie & Krishnan [29] performs
better in terms of classification accuracy, however this work
has been tested in a small part of the Freiburg database (data
from 4 patients with overall duration of 8 h) and thus no clear
conclusions can be drawn for the generality of the method.
The same applies for the approach proposed in [30] from the
same authors, which achieved 100% classification accuracy
for the ZONF-S problem of the Bonn database, however has
been tested using data from only 2 (out of the 21) patients
from the Freiburg database. Furthermore, in both cases, the
proposed methodology obtained better classification accuracy
results (being 97.74%) for a much larger dataset obtained from
the Freiburg database (data from all 21 patients with overall

Table 2 patient characteristics, number of seizures and number of EEG
segments (Ictal and Interictal) for each patient in the Freiburg database

Patient Sex Age (years) Number
of Seizures

Number
of Ictal
segments

Number
of Interictal
segments

1 F 15 3 14 140

2 M 38 3 174 1740

3 M 14 5 226 2260

4 F 26 5 207 2070

5 F 16 5 103 1030

6 F 31 3 89 890

7 F 42 2 188 1880

8 F 32 2 160 1600

9 M 44 5 276 2760

10 M 47 5 1019 10,190

11 F 10 4 307 3070

12 F 42 4 103 1030

13 F 22 2 155 1550

14 F 41 4 426 4260

15 M 31 4 284 2840

16 F 50 5 294 2940

17 M 28 5 207 2070

18 F 25 5 25 250

19 F 28 4 19 190

20 M 33 5 205 2050

21 M 13 5 199 1990

Total 85 4680 46,800

Table 3 Results for different classification problems for the database of
Bonn and the database of Freiburg, in terms of accuracy, sensitivity and
specificity

Classification
problem

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Bonn
database

ZONF-S 99.16 99.52 91.56

Z-S 99.95 100 91.66

NF-S 98.15 98.64 97.18

F-S 97.77 97.64 97.91

ZO-NF-S 95.84 96.04* 97.75*

Z-F-S 96.09 96.09* 98.01*

Z-O-N-F-S 82.25 82.25* 95.00*

Average 95.60 95.74 95.58

Freiburg
database

Ictal-interictal 97.74 99.74 97.30

*Average for all classes
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duration of 28.6 h). Bajaj & Pachori [32] also reported high
results for the Bonn database. However, when Parvez & Paul
[31] applied their methodology in a dataset obtained from the
Freiburg database, the obtained results indicated a significant
reduction, being >25% for classification accuracy (from 96 to
80.7%) and > 35% for sensitivity (from 94.44 to 59.22%).

The Freiburg database is a comprehensive EEG dataset,
containing continuous long-term EEG recordings that are re-
lated to clinical EEG recordings. Hence, a comparison of the
results obtained by the proposed methodology with the
Freiburg database with other Freiburg-based studies should
be considered. Table 5 presents the most recent studies that
have utilized the DWT, aiming to extract the sub-bands of
interest for the identification of seizure patterns. It can be seen
that the proposed method with the low-dimensional feature
vector is comparable to other studies and shows great results
compared to previous DWT-based methods in terms of clas-
sification sensitivity. Our method indicated high classification
sensitivity (99.74%), whereas other DWT-based methods
[22–24, 41], showed sensitivity results ranging from
95.10%–96.77%. The method proposed by Alickovic et al.
[42] indicated the best sensitivity (99.95%), which is slightly
better compared to the results of our method. Also, the False
Detection Rate (FDR) of the proposed method is 0.21/h and is
almost the same with the methods proposed in [23, 24]. The
FDR of the method proposed by Zhou et al. [41] indicated the
best FDR (0.13/h), whereas the method proposed by Liu et al.
[22] showed the worst false detection rate per hour (0.58/h).
Consequently, the great classification results of our method
render the proposed methodology capable for clinical applica-
tion in seizure prediction.

To the best of our knowledge, this is the first methodol-
ogy validated on both Bonn and Freiburg databases,
employing a large amount of data from all 21 patients of
the later. The high levels of classification accuracy, sensi-
tivity and specificity for both databases confirms the robust-
ness of the proposed methodology, thus also being the only
methodology that have experimentally proved its robust-
ness for this problem. Concerning the Freiburg database,
the proposed approach utilizes only the ictal EEG segments
between the seizure onset and seizure end, containing only
the seizure activity and not the entire ictal EEG recording
provided in the database; hence, it is more appropriate to
accurately capture the seizure events. However, a drawback
of the proposed methodology is that the DWT is applied to
decompose the signal into sub-bands of interest depending
on the sampling frequency. Hence, these sub-bands corre-
spond approximately to EEG rhythms, meaning the sub-
band related to theta rhythm with DWT is the wavelet coef-
ficient D5 (2.7–5.4 Hz) instead of the actual theta rhythm
that ranges from 4 to 8 Hz. A filter-based approach may be
more appropriate and would be examined in the future
work.

6 Conclusion

Epilepsy remains the most challenging brain disorder world-
wide. Various EEG processing methods have been proposed
over the last years for automated seizure detection and predic-
tion, with the majority of them employing EEG data from a
single center. The proposed methodology has been evaluated
on two of the most well-known EEG databases, showing sig-
nificant classification results in discriminating seizure activity.
Future research work will be towards re-evaluation on other
databases to further demonstrate the generality of the method,
in an attempt to predict seizures and deliver alternative inter-
vention approaches to patients with refractory epilepsy. The
ultimate research goal is to predict seizure occurrences and
shed light on the underlying mechanisms of the disorder, in
order to improve the patient’s life and provide robust alterna-
tive solutions to patients with uncontrolled seizures. On this
basis, closed-loop therapies may provide new intervention
options [43] and therefore, robust seizure detection algorithms
are an important issue for closing the loop.
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