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Abstract: Alzheimer’s Disease (AD) is a neurogenerative disorder and the most common type of
dementia with a rapidly increasing world prevalence. In this paper, the ability of several statistical and
spectral features to detect AD from electroencephalographic (EEG) recordings is evaluated. For this
purpose, clinical EEG recordings from 14 patients with AD (8 with mild AD and 6 with moderate AD)
and 10 healthy, age-matched individuals are analyzed. The EEG signals are initially segmented in
nonoverlapping epochs of different lengths ranging from 5 s to 12 s. Then, a group of statistical and
spectral features calculated for each EEG rhythm (δ, θ, α, β, and γ) are extracted, forming the feature
vector that trained and tested a Random Forests classifier. Six classification problems are addressed,
including the discrimination from whole-brain dynamics and separately from specific brain regions
in order to highlight any alterations of the cortical regions. The results indicated a high accuracy
ranging from 88.79% to 96.78% for whole-brain classification. Also, the classification accuracy was
higher at the posterior and central regions than at the frontal area and the right side of temporal lobe
for all classification problems.

Keywords: Alzheimer’s Disease; EEG; detection; mild; moderate; dementia; classification; Random
Forests; window length

1. Introduction

Alzheimer’s Disease (AD) is neurogenerative disease of unknown etiology with a great prevalence
in western countries [1]. Patients with AD are characterized with a loss of memory, sleeping problems,
mood disorders, and general confusion, which are caused by structural irregularities or damage in the
synaptic connections, due to amyloid-β plaques and neurofibrillary tangles [2]. In a recent Alzheimer’s
report of 2018 [3], the worldwide AD prevalence was about 33 million patients out of 50 million people
suffering from dementia, making AD the most common type of dementia.

A variety of diagnostics procedures are performed to evaluate the cognitive and neuropsychological
state of patients with dementia, including neuronal and physical examination, brain imaging, and
electroencephalographic (EEG) recording. The Mini-Mental State Examination (MMSE) [4] and the
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Clinical Dementia Rating (CDR) [5] score are a 30-point scale and a 5-point scale respectively, which
are utilized by neurologists to evaluate the cognitive decline and functional performance of patients
with AD. Higher values of the CDR score indicate a more severe condition, whereas higher values of
the MMSE score shows very mild dementia and a healthy condition (MMSE above 28).

An analysis of the EEG recordings in AD patients is of significant importance, since information
of the brain dynamics may shed light on the exact mechanisms of AD [6]. Research studies in AD over
the past 40 years have indicated the alterations in EEG complexity, synchrony, and brain dynamics
(the slowing of alpha rhythm and the diffuse dominance of theta or delta rhythm) [7]. Several studies
have been proposed aimed at finding a correlation between the MMSE score and EEG features [7–9]
or discriminating AD patients from patients with other neurological conditions through their EEG
findings. In particular, methods have been proposed for the automated discrimination of AD patients
from healthy elderly subjects [10–16], frontotemporal dementia [17], vascular dementia [18], Mild
Cognitive Impairment (MCI) [19,20], or even epilepsy [21]. Generally, the EEG activity is analyzed
from each electrode site [6,22] or from electrode clusters [7,8,23]. Studies concerning the structural
and functional asymmetry have reported that an early onset of AD affects different lobes [24]. Thus,
an analysis of the EEG based on electrode clusters that depict different cortical regions may reveal
anatomical deficits or differences in the neuronal connection due to other mechanisms [8].

Concerning AD detection from EEG findings, researchers have suggested several different features,
which represent EEG complexity, synchrony, and regularity. Relative band power [12,20,25], absolute
band power [18], Lempel–Ziv complexity [12,20], Permutation entropy [10,22], Sample entropy [17,22],
Spectral entropy [11,15,17,26], Fuzzy entropy [20], automutual information [17], mean frequency [17,27]
amplitude modulation [10], central tendency [17], mean [12], variance [12], and zero-crossing [12] are
the most frequently extracted EEG features for AD detection. The features are extracted directly from
raw EEG segments [10,12,15,19,20] or after a signal decomposition with a Wavelet Analysis [25,27],
Power Spectral Density using Berg’s method [28], Hilbert–Huang Transform [10], or Multivariate
Multiscale Analysis [11]. Concerning the epoch duration in which the signal is segmented, there is no
common agreement regarding the appropriate window length and there is a diversity among research
studies [10–22,24,29]. According to the literature, the EEG window length is usually selected between
5 s to 12 s arbitrarily or based on literature survey.

In this study, a method for automated detection of Alzheimer’s Disease is proposed. EEG
recordings from AD patients with moderate and mild AD are analyzed along with the EEG data from
healthy, age-matched individuals in epochs of different length (ranging from 5 to 12 s). The features
from both the time and frequency domains are extracted, forming the feature vector to train several
classifiers. The evaluation of the window length shows that epochs of 12 s with Random Forests
indicate the best classification performance for six classification problems and 5 different brain regions
of interest. To the best of our knowledge, this is the first comprehensive study examining a variety of
features over multiple window lengths and showing a high classification accuracy. The results of the
methodology are presented below.

The paper is organized as follows: In Section 2, the methodology and the extracted linear and
nonlinear EEG features are addressed. Section 3 presents the obtained results for six classification
problems, and Section 4 discusses the obtained results compared to literature findings. Finally, in
Section 5, the conclusion and the future directions of this study are presented.

2. Materials and Methods

The proposed AD detection method consists of three stages. The EEG signals acquired from
10 healthy individuals and 14 AD patients were initially segmented in nonoverlapping epochs of
8 different lengths. Then, 8 time-based and 30 spectral features were extracted from the EEG segments
forming the feature vector. Finally, the resulting feature vector was used as input to train a Random
Forests classifier.
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2.1. Data Acquisition

The EEG signals used in the methodology were obtained from 24 subjects: 14 patients with AD and
10 age-matched, healthy individuals that formed the group “controls”. The evaluation of AD severity
was performed with the international MMSE score and the CDR by an experienced neurologist. Thus,
8 out of 14 patients suffered from mild AD (MMSE scores 19–23), whereas 6 patients suffered from
moderate AD (MMSE scores 10–18). Table 1 presents the demographic characteristics of the participants
in the study in terms of the median value and IQR (Q1–Q3) range. A pairwise statistical significance
analysis between the three groups (controls, mild AD, and moderate AD) was performed concerning
age and the MMSE score. Thus, a Welch ANOVA (p-value = 0.124, F(2,21) = 2.473) was performed
in order to show that there was not statistically significant difference between the 3 groups with
respect to age. Also, concerning the MMSE score that was not normally distributed, a nonparametric
Kruskal–Wallis test (χ2 = 21.913, p-value < 0.001, with a mean rank MMSE of 19.5 for the controls,
10.5 for mild AD, and 3.5 for moderate AD) was performed, aimed at proving that the groups were
significantly different in terms of the MMSE score. The statistical analysis was performed using the
IBM SPSS Statistics [29].

Table 1. The descriptions of participants’ characteristics.

Moderate AD Mild AD Controls

Age 62.5 (61.25–68.25) 73.5 (68.5–77.25) 67 (62.25–72)
Gender (m:f) 3:3 3:5 7:3

Education level (P:S:H) 3:3 4:2:2 3:3:4
MMSE 15 (14–16) 21 (20–22) 30

Disease duration (months) 32 (24–36) 22 (19.5–24) -

* m: male, f: female, P: primary education (6 years), S: secondary education (12 years), H: higher education
(>12 years).

The recordings were performed at the 2nd Department of Neurology of AHEPA General Hospital
of Thessaloniki with the Nihon Kohden EEG 2100 device. The 19 electrodes (Fp1, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) were placed on the scalp according to
the 10–20 International Reference System, and the 2 electrodes (A1 and A2) were placed on the
subject’s earlobes (left and right, respectively) for a skin impedance check. Also, the electrodes were
placed around the eyes to capture the electrooculogram (EOG). The recordings were performed with
a bipolar anterior-posterior montage and referential (Cz) into the routine EEG. Then, the recordings
were referenced to the common average value of the scalp EEG channels in the EEGLAB toolbox [30].
The parameters of the amplifier were a sensitivity at 10 µV/mm, a time constant equal to 0.3 s, and a
high frequency filter at 70 Hz.

Written consent forms to participate in this study were obtained for all the participating subjects.
The participants were asked to sit relaxed in an upright position with their eyes closed. Routine EEG
recordings were sampled at 500 Hz, and the duration ranged from 11 to 17 min (13 min on average)
for AD patients and from 20 to 23 min (21 min on average) for healthy subjects. In total, 179 min of
EEG data from AD patients (116 min from mild AD and 63 min from moderate AD) and 187 min from
healthy subjects were recorded.

2.2. Feature Extraction

The Nihon Kohden EEG 2100 device provides information about any possible artifacts during
each EEG recording (electromyographic artifacts, blinking, and swallowing), which were marked and
removed. The EEG signals are preprocessed using a high-pass FIR (Equiripple) digital filter with a
cutoff frequency at 0.5 Hz to remove low frequencies around 0. Furthermore, a Butterworth notch
filter was designed at 50 Hz to remove the 50 Hz power line noise interference from the EEG signals.
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The EEG recordings were filtered to the frequency range 0.5–60 Hz. In Figure 1, a plot of the O1 channel
of three different subjects (control, mild AD patient, and moderate AD patient) is presented.
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Figure 1. A segment of 3 s extracted from a 12-s epoch of O1 of three different subjects (control, mild
Alzheimer’s Disease (AD) patient, and moderate AD patient).

The EEG features were extracted from the filtered EEG segments and for each EEG rhythm.
Specifically, the spectral and time-based features were extracted from the EEG segments of different
window lengths for the entire spectrum, namely

1. Shannon entropy (ShanEN),
2. Multiscale entropy (MSE),
3. Mean,
4. Variance,
5. Standard deviation (STD),
6. Skewness,
7. Kurtosis, and
8. Interquartile Range (IQR).

Furthermore, the spectral features were calculated for each sub-band of interest, corresponding to
the five EEG rhythms (δ, θ, α, β, and γ). Thus, five equiripple FIR filters were initially designed and
applied to decompose the EEG segments to the specific sub-bands (0.5–4 Hz, 4–8 Hz, 8–13 Hz,13–30 Hz,
and 30–60 Hz). Then, 6 spectral features were calculated for each band of the segment, namely

9. Energy of the δ, θ, α, β, and γ bands,
10. Relative band power (RBP) of the δ, θ, α, β, and γ bands,
11. Approximate entropy (ApEN) of the δ, θ, α, β, and γ bands,
12. Permutation entropy (PermEN) of the δ, θ, α, β, and γ bands,
13. Tsallis entropy (TsalEN) of the δ, θ, α, β, and γ bands,
14. Sample entropy (SamplEN) of the δ, θ, α, β, and γ bands,

The feature vector of 38 features (8 time-based and 6 × 5 spectral features) for each EEG channel
(total 19), including the class attribute (thus, 38 × 19 + 1), was used to train a Random Forests [31]
classifier. All calculations are implemented in MATLAB environment.



Brain Sci. 2019, 9, 81 5 of 14

2.3. Classification

In order to find the optimal classification performance, a variety of classifiers (MultiLayer
Perceptron, k-Nearest Neighbor, Support Vector Machines, Naïve Bayes, and Decision Trees [32])
were evaluated for whole-brain dynamics. In Table 2, the classification accuracy of the classifiers is
presented. The Random Forests obtained the best classification results.

Table 2. The classification performance of MultiLayer Perceptron (MLP), k-Nearest Neighbor (KNN),
Support Vector Machines (SVM), Naïve Bayes (NB), and Decision Trees (DT) for 12-s epochs in terms
of accuracy.

Classification Problem MLP KNN SVM NB DT RF

CN/AD 86.11 80.98 77.23 66.20 83.29 91.80
CN/mild 89.02 85.16 77.11 54.80 85.76 91.77

CN/moderate 95.23 93.62 91.09 81.93 94.48 96.76
CN-mild/moderate 94.20 91.39 88.86 80.05 92.15 94.99

mild/moderate 90.17 87.48 79.15 70.03 86.30 91.71
CN/mild/moderate 80.71 74.88 66.59 46.74 77.55 88.79

The Random Forests constructed multiple decorrelated decision trees using the bagging method.
The decision trees were grown in binary partitioning, utilizing randomly selected features at each node
to determine the split. Each decision tree was responsible for its own prediction, and in the end, they
voted for the most popular class [31]. In the experiments, 100 decision trees were selected and the
10-fold cross-validation technique was employed.

3. Results

To evaluate the EEG window length and the proposed methodology, 6 classification problems are
created. In the first problem, the group of 10 healthy subjects forms the class “controls” (CN), whereas
the EEG features of all of the 14 AD patients are merged and forms the class “Alzheimer’s” (AD),
resulting in the problem CN/AD. In the second problem (CN/mild/moderate), the AD group is further
divided into the “mild” and “moderate” classes, corresponding to the groups of patients with mild AD
(8 patients) and moderate AD (6 patients), respectively. The third problem is a 2-class problem between
the controls and mild AD patients (CN/mild), whereas the forth problem consists of EEG features of
the controls and moderate AD patients (CN/moderate). The fifth problem is a classification between
two groups. The first group includes the moderate AD patients, and the second group consists of EEG
data from the controls and patients with mild AD (CN-mild/moderate). Finally, the sixth problem
corresponds to the classification among mild and moderate AD patients (mild/moderate).

The classifier’s performance is evaluated with Accuracy, Precision, F1-score, and kappa statistics.
The accuracy of the classification shows the ability of the classifier to differentiate AD subjects from
healthy subjects, healthy subjects from AD stages, and mild AD patients from moderate AD patients.
The precision of the classification between AD patients and healthy subjects examines whether the
correctly classified instances of AD patients are actual AD patients and whether the rest are healthy
subjects incorrectly labeled as AD. On the other hand, the F1-score expresses the average of the precision
and recall, wherein the recall shows whether the instances that should have been classified as AD are
actually labeled as AD patients. The Kappa statistic evaluates the correctly classified instances and
those that have been classified randomly owing to uncertainty [33]. The results for the six classification
problems for 8 different window lengths (ranging from 5 to 12 s) are depicted in Table 3. For the 3-class
problem (CN/mild/moderate), the average values are presented.
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Table 3. The classification results in terms of the Accuracy (ACC) for each classification problem for 8
window lengths.

Classification Problem 5 s 6 s 7 s 8 s 9 s 10 s 11 s 12 s

CN/AD 86.98 88.04 89.15 89.93 90.37 91.09 91.66 91.80
CN/mild 86.60 87.65 88.81 89.50 90.09 90.81 91.43 91.77

CN/moderate 94.68 95.13 95.64 95.99 96.18 96.46 96.56 96.76
CN-mild/moderate 92.59 93.27 93.78 94.06 94.29 94.70 94.88 94.99

mild/moderate 87.63 88.70 89.52 90.25 90.69 91.19 91.38 91.71
CN/mild/moderate 82.34 83.73 85.23 86.10 86.93 87.72 88.47 88.79

The best window length is 12 s for all classification problems with the classification accuracy ranging
from 88.79% to 96.76% for the CN/mild/moderate and CN/moderate problems. The CN-mild/moderate
problem indicates the second highest value of accuracy (94.99%), followed by CN/AD (91.80%),
CN/mild (91.77%), and mild/moderate (91.71%). On the other hand, the worst classification results are
obtained for epochs of 5 s. Likewise, CN/moderate shows the highest accuracy (94.68%), followed by
the CN-mild/moderate (92.59%), mild/moderate (87.63%), CN/AD (86.98%), CN/mild (86.60%), and
the 3-class problem CN/mild/moderate that succeeded the worst accuracy (82.34%). The classification
accuracies for epochs of 6, 7, 8, 9, 10, and 11 s are gradually increased.

In Figure 2, a visualization of the obtained accuracy for each classification problem over different
window lengths is presented.
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Figure 2. The results in terms of the classification accuracy for the six classification problems over
8 window lengths. (blue: CN/AD, yellow: CN/mild, green: CN/moderate, red: CN-mild/moderate,
purple: mild/moderate, grey: CN/mild/moderate).

The rest of the analysis is conducted solely for the 12-s window length, which is the best
classification window length according to the analysis. Table 4 presents the classification results
(Accuracy, Precision, F1-score, and kappa statistics) as obtained for the best window length.
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Table 4. The classification results in terms of the Accuracy (ACC), Precision, F1-Score, and Kappa
Statistics for a 12-s window length.

Classification Problem ACC (%) Precision (%) F1-Score Kappa

CN/AD 91.80 93.35 0.9077 0.8340
CN/mild 91.77 93.11 0.8739 0.8132

CN/moderate 96.76 97.78 0.9277 0.9069
CN-mild/moderate 94.99 92.24 0.8372 0.8079

mild/moderate 91.71 91.42 0.8837 0.8194
CN/mild/moderate 88.79 88.83 0.8474 0.8860

CN: Controls, AD: Alzheimer’s Disease.

The best classification accuracy (96.76%), which also shows the highest kappa statistic (0.9069) and
F1-score = 0.9277, is obtained for the 2-class problem CN/moderate, followed by the CN-mild/moderate
(94.99%) with a kappa statistic of 0.8079 and an F1-score = 0.8372 and the CN-AD (91.80%) with a kappa
statistic of 0.8340 and an F1-score = 0.9077. The 3-class problem CN-mild-moderate indicates the worse
classification accuracy (88.79%) with a kappa of 0.8860 and an F1-score = 0.8474. The discrimination
between the controls from mild Alzheimer’s (CN-mild) and between mild AD from moderate AD
(mild-moderate) presents almost the same classification accuracy (91.77% and 91.71%, respectively)
with the kappa statistics being 0.8132 and 0.8194, respectively, and the F1-scores equal to 0.8739 and
0.8837, respectively.

Furthermore, since the examination of different cortical regions is significant in AD, the electrodes
are grouped in 5 groups, as proposed in previous studies [8,9] in order to capture the differences in the
brain activities among subject groups in different brain regions. Thus, the 6 classification problems are
also examined for epochs of 12 s for the anterior (Fp1, F3, Fz, Fp2, and F4), central (C3, Cz, and C4),
left temporal (F7, T3, and T5), right temporal (F8, T4, and T6), and posterior (O1, O2, P3, Pz, and P4)
clusters. The results are presented in Table 5. For the 3-class problem (CN/mild/moderate), the average
values are presented.

A discrimination among the healthy subjects and Moderate AD patients (CN/moderate) indicates
the best classification accuracy for all electrode clusters, ranging from 96.39% to 97.72% with kappa
statistics from 0.8957 to 0.9338 and F1-scores from 0.9188 to 0.9469 for the anterior cluster, the right side
of the temporal region, the left side of the temporal region, the central region, and the posterior region.

For the 2-class problem “CN-mild/moderate”, the central region shows the best classification
results (ACC = 97.19%, kappa = 0.8796, and F1-score = 0.9163), followed by the posterior region (ACC
= 96.95%, kappa = 0.8492, and F1-score = 0.9425), the left side of the temporal region (ACC = 95.71%,
kappa = 0.8348, and F1-score = 0.8599), the right side of the temporal region (ACC = 95.23%, kappa =

0.8156, and F1-score = 0.9480), and the anterior cluster (ACC = 94.37%, kappa = 0.7833, and F1-score =

0.8161). For the 2-class problem “mild-moderate”, the best classification accuracy is 96.24% (kappa =

0.921 and F1-score = 0.9518) for the central cluster, followed by 94.66% (kappa = 0.8828 and F1-score =

0.9239) for the posterior cluster, 94.28% (kappa = 0.8778 and F1-score = 0.9234) for the temporal/left,
92.57% (kappa = 0.8339 and F1-score = 0.8884) for the temporal/right, and the worse accuracy 90.03%
(kappa = 0.7883 and F1-score = 0.8610) for the anterior cluster.

For the classification problem “CN/mild”, the highest accuracy is 94.87% for the central cluster
(kappa = 0.8807 and F1-score = 0.9179), followed by 93.55% (kappa = 0.8566 and F1-score = 0.9055)
for the posterior cluster, 92.18% (kappa = 0.8186 and F1-score = 0.8754) for the temporal/left, 91.02%
(kappa = 0.8065 and F1-score = 0.8769), and 90.84% (kappa = 0.7894 and F1-score = 0.8561) for both the
temporal/right and anterior clusters.
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Table 5. The classification results in terms of the Accuracy (ACC), Precision, F1-score, and Kappa
statistics for the anterior (Fp1, F3, Fz, Fp2, and F4), central (C3, Cz, and C4), left/temporal (F7, T3, and
T5), right/temporal (F8, T4, and T6), and posterior (O1, O2, P3, Pz, and P4) clusters. For the analysis,
the electroencephalographic (EEG) signals were segmented in epochs of 12 nonoverlapping seconds.

Classification Problem ACC (%) Precision (%) F1-Score Kappa

anterior

CN/AD 91.53 90.32 0.9244 0.8283
CN/mild 90.84 92.47 0.8561 0.7894

CN/moderate 96.39 97.70 0.9188 0.8957
CN-mild/moderate 94.37 90.78 0.8161 0.7833

mild/moderate 90.03 89.48 0.8610 0.7835
CN/mild/moderate 87.67 87.31 0.8041 0.7861

central

CN/AD 94.76 94.00 0.9534 0.8936
CN/mild 94.87 96.44 0.9179 0.8807

CN/moderate 97.51 97.68 0.9469 0.9307
CN-mild/moderate 97.19 96.40 0.9163 0.8796

mild/moderate 96.24 96.44 0.9518 0.9210
CN/mild/moderate 93.80 94.43 0.9051 0.8930

temporal/left

CN/AD 92.45 91.98 0.9337 0.8462
CN/mild 92.18 91.53 0.8754 0.8186

CN/moderate 97.05 99.11 0.9319 0.9131
CN-mild/moderate 95.71 94.49 0.8599 0.8348

mild/moderate 94.28 93.78 0.9234 0.8778
CN/mild/moderate 90.49 90.73 0.8528 0.8339

temporal/right

CN/AD 90.99 88.94 0.9148 0.8194
CN/mild 91.02 92.12 0.8769 0.8065

CN/moderate 96.40 97.95 0.9232 0.8997
CN-mild/moderate 95.23 94.80 0.8434 0.8156

mild/moderate 92.57 92.93 0.8884 0.8329
CN/mild/moderate 88.78 89.83 0.8488 0.8112

posterior

CN/AD 94.17 93.90 0.9468 0.8823
CN/mild 93.55 93.25 0.9055 0.8566

CN/moderate 97.72 98.04 0.9485 0.9338
CN-mild/moderate 96.95 94.20 0.9425 0.8492

mild/moderate 94.66 93.29 0.9239 0.8828
CN/mild/moderate 91.80 91.57 0.8981 0.8600

The classification of Alzheimer’s concerning controls group (CN/AD) presents good classification
results with accuracies ranging from 90.99% to 94.76% (temporal/right, anterior, temporal/left, posterior,
and central), with kappa statistics from 0.8194 to 0.8936, and with F1-scores from 0.9148 to 0.9534.
The worst classification performance is obtained for the 3-class problem (CN/mild/moderate) with
an accuracy ranging from 87.67% to 93.80%, with kappa from 0.7861 to 0.8930, and with an F1-score
from 0.8041 to 0.9051 for the anterior cluster, the right side of the temporal region, the left side of the
temporal region, the posterior region, and the central region. A visualization of the obtained accuracy
range for each classification problem is depicted in Figure 3. Figure 4 represents the classification
accuracy in each cluster for each classification problem.
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4. Discussion

In this study, a methodology for the detection of AD-related dynamics from the whole brain
and from specific brain regions of interest was presented. The statistical and spectral features were
calculated from the EEG segments of different lengths acquired from 14 patients with AD and 10 healthy
subjects, which were used to train and test a Random Forests classifier. Six different classification
problems were conducted for the evaluation of the proposed method.

The proposed methodology showed significant results in the discrimination between healthy
elderly and AD-related patient groups and in the characterization of the disease (mild/moderate). With
regard to the window length, the results showed a high classification accuracy as the length of the
window was gradually increasing, and the best classification results were obtained for epochs of 12 s.

Furthermore, in this study, the brain asymmetry was examined since it was highly related to
EEG information processing [34,35]. Generally, healthy elderly individuals showed a cortical atrophy
which was predominantly affected by age and gradually resulted in MCI without significant functional
alterations. Brain asymmetry in healthy individuals was present mainly in the right temporal lobe due
to cortical thinning, and higher dynamics were shown. On the other hand, in AD patients, diffuse
cortical atrophy, brain disfunction, and lower dynamics over the cerebral cortex were shown. The
symptoms of patients with AD were due to pathological alterations in many regions of the cerebral
cortex and became more severe as the disease progressed. The hippocampus was predominantly
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affected by AD, and hippocampal asymmetry was significantly reduced in AD patients. Also, functional
magnetic resonance imaging (fMRI) studies [36] have shown additional atrophy in AD patients with
AD in the medial temporal cortex, and it was evidence that the degree of brain asymmetry progressively
decreased in AD patients [37]. The obtained results were consistent with the literature findings
regarding functional abnormalities in AD patients compared to healthy, age-matched individuals.
The results of the study indicated that AD was diagnosed better from EEG signals at the central
and occipitoparietal regions and the left side of the temporal lobe than at the frontal area and at
the right side of the temporal lobe. AD-related brain dynamics were discriminated from the ones
acquired from healthy subjects better at the central and posterior regions for all classification problems
(CN/mild, CN/moderate, CN/AD, CN-mild/moderate, and CN/mild/moderate) and the 2-class disease
severity (mild-moderate). This outcome is in line with literature that suggests that the occipitoparietal
area [1,29,38] and the left side of the brain [11,12] are more affected in AD than the frontal area and
right hemisphere.

Also, a classification between healthy elderly subjects and dementia patients with moderate AD
(CN-mild/moderate and CN/moderate) showed the best classification accuracy for a whole-brain
classification and for each cluster separately. Undoubtedly, it was easier for the classifier to capture EEG
changes between healthy elderly and AD patients with more severe disease progress, than between
healthy individuals and mild AD patients, who showed less cognitive decline. Furthermore, the most
challenging classification problem was the 3-class problem (CN/mild/moderate), which presented the
worse performance in both the entire-brain classification and for each cluster. The low accuracy of this
problem is mainly attributed to the misclassification of the mild AD group as the control group.

Most of previous studies [19,20,26] dealt with healthy elderly subjects, patients with AD, and
patients with MCI, which is a prodromal stage of AD, not a category [19]. In this study, MCI patients
were not included in the analysis. Therefore, it was not straightforward to compare the results
of this study with previous reports related to MCI, and so, these studies were excluded from the
comparison. The proposed method with statistical, spectral, and nonlinear features and Random
Forests outperformed in the classification accuracy of a previous study [10] for all of the four binary
classification problems (CN/AD, CN/mild, CN/moderate, and mild/moderate). Falk et al. [10] proposed
a method wherein the Hilbert–Huang Transform was used to decompose EEG signals in 5 frequency
bands, and then, the percentage modulation energy (PME) was extracted for each EEG rhythm. Support
Vector Machines (SVM) were trained and tested with PME and obtained a 90.60% classification accuracy
for the CN/AD problem. For the same classification problem, a Linear Discriminant Analysis classifier
in a study [13] indicated a 90% accuracy with a maximum detrended cross-correlation coefficient when
the C3-P3 channels were used as the input.

High levels of accuracy above 96% were obtained in References [11,12,14]. Kulkarni et al. [12]
extracted wavelet, spectral, and complexity features from 50 AD patients and 50 healthy, age-matched
subjects. The feature vector of the complexity features with SVM obtained a classification accuracy of
96% for the discrimination of AD patients from the controls (AD-CN); however, the MMSE score was not
reported. Also, in Reference [14], the authors proposed a brain functional network construction method
based on the calculation of multiscale entropy and evaluated several classifiers. The classification
accuracy for the CN/AD problem with the k-Nearest Neighbor was above 96%. Nevertheless, the
MMSE score of the AD subjects included in this study ranged from moderate AD to MCI. (MMSE
score = 21.3 ± 5.8). Therefore, since, in our study, no MCI patients were included, a comparison with
Reference [14] was not straightforward.

Another AD detection method was proposed in Reference [11], in which the proposed Multivariate
Multiscale Weighted Permutation Entropy method with ROC curves achieved a 96.70% accuracy in
the right frontal to the left occipitoparietal regions. However, the MMSE score of AD patients in
this study ranged from 12–15, indicating a moderate AD stage. Thus, it was feasible to compare
the abovementioned classification with the results of the “CN/moderate” problem of the proposed
methodology, which showed a slightly better classification accuracy.
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Simons and Abasolo [15] proposed a distance-based Lempel–Ziv complexity (dLZC) method to
characterize the changes between pairs of electrodes and succeeded with a 78.25% accuracy for the
O1–O2 pair. A comparison of the proposed methodology with previous studies is presented in Table 6.

Table 6. A comparison of the performances of the various methods proposed in the literature related to
Alzheimer’s Disease.

Authors No. of
Subjects

Window
Length MMSE Range Method Classification

Problem ACC

Falk et al.
[10]

11 CN/11
mild/10

moderate
5 s

CN: 26.6 ± 2.7
mild: 18.5 ± 4.7
mod: 14.8 ± 3.9

HHT, Amplitude
modulation

analysis, SVM

CN/AD
CN/mild
CN/mod

mild/mod

90.60%
74.10%
71.40%
53.80%

Deng et al.
[11] 14 CN/14 AD 8 s CN: 28–30

AD: 12–15

Multivariate
Multiscale Weighted

Permutation
Entropy, ROC

analysis

CN/AD 96.70%

Kulkarni et
al. [12] 50 CN/50 AD ~5 s

Spectral entropy,
Spectral centroid,
Spectral roll-off,

Zero Crossing Rate,
SVM

CN/AD 96.00%

Chen et al.
[13] 15 CN/15 AD 8 s CN: 28.1–30

AD: 12.5–15.7

Detrended
Fluctuation

Analysis,
Cross-correlation
coefficient, LDA

CN/AD
90.00%
(only

C3–P3)

Song et al.
[14] 15 CN/15 AD 8 s CN: 27.1 ± 1.3

AD: 21.3 ± 5.8

Brain Functional
Connectivity

Analysis,
weighted-permutation

entropy, KNN

CN/AD 96.63%

Simons and
Abasolo [15] 11 CN/11 AD 5 s CN: 30

AD: 13.1 ± 5.9

Distance-based
Lempel Ziv
Complexity

CN/AD
78.25%
(only

O1–O2)

This study 10 CN/14 AD 12 s
CN: 30

mild: 21 ± 1.3
mod: 15 ± 1.6

moments, STD, IQR,
Energy, RBP,

ShanEN, ApEN,
TsalEN, PermEN,
MSE, SamplEN,
Random Forests

CN/AD
CN/mild
CN/mod

mild/mod
CN-mild/mod
CN/mild/mod

91.80%
91.77%
96.76%
91.71%
94.99%
88.79%

CN: Controls, AD: Alzheimer’s Disease, mod: moderate AD, HHT: Hilbert–Huang Transform, SVM: Support
Vector Machines, LDA: Linear Discriminant Analysis, KNN: k-Nearest Neighbor, STD: Standard Deviation, IQR:
Interquartile range, RBP: Relative Band Power, ShanEn: Shannon Entropy, ApEN: Approximate Entropy, TsalEN:
Tsallis Entropy, PermEn: Permutation Entropy, MSEL Multiscale Entropy, SamplEN: Sample Entropy.

5. Conclusions

AD is a severe neurodegenerative disease, and we know little about the underlying mechanics of
the disorder. Currently, the challenge in the field of AD-related EEG analysis is to accurately diagnose
dementia as early as possible towards a more efficient and tailored treatment plan in order to delay the
progression of the disease. Research studies focus on evaluating specific EEG markers that provide
a highly accurate discrimination of AD patients that are on different medication in order to assist
neurologists in the adjustment of intervention plans in clinical trials [39–41]. The proposed study is an
extend of our previous work [42] and investigated the ability of several statistical and spectral features
to accurately discriminate AD patients with mild or moderate AD from healthy, age-matched subjects.
Despite the good classification performance, improvements need to be done concerning the statistical
significance of the results. Feature selection methods and other classification algorithms need to be
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evaluated to sustain the quality of the classification performance. Furthermore, this study is evaluated
on 24 subjects. In a forthcoming study, EEG recordings from more participants will be analyzed.

A limitation of the proposed methodology is that no additional EEG preprocessing for artifacts
removal was employed. This is mainly because, in the current study, the EEG signals were obtained so
as to minimize EMG or other types of interferences. However, it is possible that an EEG recording may
be contaminated with artifacts, and thus, methods detecting EOG and EMG artifacts are considered
necessary in a robust and concise methodology. Future work will include the employment of EEG
preprocessing techniques in order to detect and remove EMG or other types of artifacts.
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