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a b s t r a c t 

Alzheimer’s Disease (AD) is the most common type of dementia with world prevalence of 

more than 46 million people. The Mini-Mental State Examination (MMSE) score is used to 

categorize the severity and evaluate the disease progress. The electroencephalogram (EEG) 

is a cost-effective diagnostic tool and lately, new methods have developed for MMSE score 

correlation with EEG markers. In this paper, EEG recordings acquired from 14 patients with 

mild and moderate AD and 10 control subjects are analyzed in the five EEG rhythms ( δ, 

θ , α, β , γ ). Then, 38 linear and non-linear features are calculated. Multiregression linear 

analysis showed highly correlation of with MMSE score variation with Permutation Entropy 

of δ rhythm, Sample Entropy of θ rhythm and Relative θ power. Also, the best statistically 

significant regression models in terms of R 2 are at O2 (0.542) and F4 (0.513) electrodes 

and at posterior (0.365) and left-temporal cluster (0.360). 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Alzheimer’s Disease (AD) is a progressive chronic brain disease and the most usual type of dementia. AD is characterized

by abundant amyloid plaques, neurofibrillary tangles, neuropil threads, and dystrophic neurites as well as neuronal loss or

synaptic dysfunction [1] . The main symptoms of AD are memory loss, cognitive abilities damage and behavioral problems

in general. In 2015, it was reported [2] that over 46 million patients suffer from dementia worldwide with an estimated

increment to 131.5 million patients by 2050. AD restrains the ailing individual and impairs the quality of the patient’s life. 

The diagnosis of AD is done with several routine medical diagnostics. Mental status is examined with a cognitive ques-

tionnaire performed by neurophysiologists and assessed in a 30-point scale named Mini-Mental State Examination (MMSE)
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Table 1 

EEG findings for Alzheimer’s Disease, based on the features that are most recommended in the literature. Alterations in EEG 

features of AD patients compared to healthy subjects are depicted with increase/decrease arrows. 

Alterations in EEG recordings of AD patients EEG activity Brain region 

↑ power of δ and θ bands [16–18] slowing temporal, parietal, and occipital regions. 

↑ delta modulations of δ band across [6] slowing temporal, parietal, and occipital regions. 

↓ power of higher bands [16] slowing entire brain 

↓ alpha modulation [19] slowing parietal region 

↓ auto-mutual information [9] complexity T5, T6, O1, O2, P3, P4 

↓ Approximate Entropy [9] complexity O1, O2, P3, P4 

↓ Permutation entropy [7,8] complexity temporal, parietal, and occipital regions. 

↓ Sample Entropy [11] complexity O1, O2, P3, P4 

↓ Tsallis Entropy [20] complexity C7, T7 

↓ Multiscale Entropy [4,13] complexity entire brain 

↓ correlation dimension [10] complexity F3, F4, F8, Fp1, Fp2, C3, C4, T3, T4, T6, P3, P4, O2 

↓ 1st positive Lyapunov exponent [10] complexity F3, F4, F8, Fp1, Fp2, C3, C4, T3, T4, T6, P3, P4, O2 

↑ � (global complexity) [21] complexity entire brain 

↓ Lempel–Ziv Complexity [11] complexity entire brain 

↑ stochastic event synchrony measures [14] synchrony entire brain 

↓ Granger causality [14] synchrony entire brain 

↓ state space-based synchronization measures [14] synchrony entire brain 

↓ magnitude and phase coherence [14] synchrony entire brain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with lower MMSE indicating more severe cognitive decline. Brain imaging with magnetic resonance imaging (MRI) or com-

puted tomography (CT) and Electroencephalographic (EEG) recording are also performed along with general neurological

and physical examination [3] . 

Over the past decades, the EEG as a cost-effective diagnostic method, has become of great scientific interest and vari-

ous researchers have tried to extract valuable information about dementia. Researchers have focused on analyzing the EEG

recordings from AD patients in order to find alterations related to the complexity, the synchrony and the regularity of EEG

activity. For this purpose, researchers in several studies have acquired the EEG recordings from AD patients in a clinical

environment, while the patients were resting in an upright position [4] or during a cognitive task [5] . Then, the EEG record-

ings were processed and certain features were extracted, in order to discriminate the AD patients from healthy controls

[6–8] or compare the AD characteristics with the ones extracting from age-matched healthy subjects and shed light on the

mechanisms and the progression of the disease. 

In particular, the EEG complexity in AD patients has concerned the majority of researchers. In previous studies, the

auto-mutual information, [9] the correlation dimension [10] , the largest Lyapunov exponent [10] , the Approximate Entropy

[9] ), the Permutation entropy [8] , the Sample Entropy [11,12] , the Tsallis Entropy [13] , the Lempel–Ziv complexity [11] have

been examined and have revealed perturbations of EEG complexity. Generally, results reported loss of physiological EEG

complexity in moderate AD patients in comparison with EEG signals from healthy age-matched subjects. Furthermore, few

studies [5,14,15] have tried to detect fluctuations in EEG synchrony from patients’ recordings related to AD. In the literature,

several synchrony measures have been evaluated including correlation coefficient [14] , cross-entropy [14] , wavelet entropy

[14] , state space and divergence measures [14] , Multivariate Autoregressive Model (MVAR) coherence [14] , coherence [5,15] ,

Granger causality [14] , partial coherence [5,14] direct Directed Transfer Function (DFT) [14] , phase measures [5,14] , canonical

correlation, [5,15] , conditional Granger causality [5,15] , dynamic canonical correlation [5] ) and cross-mutual information [5] .

In these studies, the authors did not extract results solely for each channel, but they formed pairs [15] or clusters [13,14] of

EEG channels, to comprehensively analyze the synchrony and obtain results, which are more representative to clinical prac-

tice. Results indicated that the left hemisphere is mostly affected [13,16] and there is a decrease in EEG synchrony in AD

patients, mostly in patients with moderate AD [5] compared to healthy individuals. 

With regard to the regularity of EEG activity that have been reported, studies have shown that there is a slowing of brain

activity, meaning that the power of higher EEG bands is decreased and the power of lower EEG bands is increased. Many

studies have reported a decrease of the relative α band power and an increase of δ band power [17] and especially in severe

AD patients [18] . Also, an increase in θ band power in mild AD [18] and decrease of δ modulations of the δ frequency band

across temporal, parietal, and occipital regions [19] has been observed. Furthermore, decrease of higher bands power and

amplitude modulation in parietal regions [19] and especially of α band in moderate AD patients [18] have been reported. 

The effects of the AD are mainly shown in occitoparietal and temporal regions and in α and θ bands ([6, 7]). This

interesting fact indicates that the slowing of the EEG in these areas correspond to the degeneration of these regions in AD

patients [7] . Table 1 presents a concise overview of the EEG alterations based on the features that are mostly proposed in

the literature, along with the aspects of the EEG that each feature represents. 

1.1. Related work 

Recently, a new field of research has emerged and researchers have addressed the problem of correlating the cognitive

decline through the MMSE score with the EEG features from the AD patients. In [4] the authors investigated the appropriate
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parameters m and r of multiscale entropy and examined the correlation of multiscale entropy with cognitive dysfunction. For

this purpose, EEG epochs of 30 s acquired from 108 AD patients were analyzed, forming a 1-hour-long database for analysis.

Three groups of pathological EEG data were formed according to the severity of the disease (mild, moderate and severe).

The authors examined the best range of scale factor in multiscale entropy and performed a partial correlation analysis. The

post-hoc statistical analysis showed that patients with moderate to severe AD showed the lowest multiscale entropy for

scale factors 1 to 6 in most electrodes and the highest multiscale entropy for scale factors 16 and 20 in posterior electrodes.

Also, the multiscale entropy of EEG in temporal and occipitoparietal electrodes was correlated with MMSE score. 

The amplitude modulation is another feature examined in a recent study [19] . EEG recordings from 76 participants (27

healthy controls, 27 patients with mild AD and 22 with moderate AD) were analyzed with Hilbert Huang Transform and

the cross-frequency amplitude modulation interaction was computed. The results concerning the progression of the disease

severity indicated a decrease in beta band amplitude modulation in temporal, parietal, and occipital regions and increased

theta band amplitude modulations. 

Researchers have recently shown interest on associating the disease severity and particularly the MMSE score with EEG

findings ([5, 13, 15]). The multi-centric Prospective Dementia Database Austria (PRODEM) has been employed in all these

studies. The EEG was recorded both in resting state with eyes closed and during an encoding task. For this study([15, 22]),

118 patients with possible or probable AD were recruited. The EEG recording of each patient lasted about 158 s and it seg-

mented in epochs of 4-s with 2-s overlap. The authors estimated several features to examine the reduced complexity, the

altered synchrony and the slowing of EEG patterns in AD and associated the MMSE score with relative θ power, coherence,

canonical correlation, auto-mutual information, Shannon and Tsallis entropy. The coherence and canonical correlation asso- 

ciated with MMSE score and also, the relative θ power and the auto-mutual information were increased in EEG recordings

from AD patients. In a similar study [5] of 79 subjects with probable AD, the EEG was acquired in both resting state and dur-

ing a cognitive task. The quadratic least-squares regression was employed for the correlation of the EEG synchrony changes

with severity of AD as measured by MMSE score. The authors examined the EEG synchrony in electrode clusters. Results

showed that the synchrony between Anterior-Temporal/Left, Posterior-Temporal/Left and Posterior-Temporal/Right EEG chan- 

nel groups were most significantly related with AD severity. Furthermore, the EEG synchrony was increased for MMSE score

above 20 and decreased for MMSE below 20. Similarly, [13] the auto-mutual information (AMI) and several entropy features

(Shannon, Tsallis, Multiscale, Spectral) were examined and results showed a decline in AMI, Spectral entropy and Multiscale

Entropy as the disease was progressing. 

In this study, we extract several features from EEG recordings from patients with mild AD, moderate AD and subjects

without dementia and examine their correlation with MMSE score. The features are both statistical and spectral and most

of the them have been proposed independently for MMSE correlation. The objective of this study is to find specific EEG

markers from a group of linear and nonlinear features associated to MMSE score. 

The paper is organized as follows: In Section 2 the methodology and the extracted EEG features are addressed.

Section 3 presents the obtained results and the MMSE score predictors and Section 4 discusses the obtained results com-

pared to literature findings. Finally, the conclusion of the study is presented in Section 5 . 

2. Materials and method 

EEG recordings from 24 subjects,14 patients with AD (5 with moderate AD and 9 with mild AD) and 10 healthy subjects

are analyzed. Then, 38 spectral and statistical features are calculated and a Multiple Regression analysis is performed in

order to examine the model of features that best correlates with the MMSE. 

2.1. Database description 

In this study, 24 subjects participated from the 2nd Department of Neurology of AHEPA General University Hospital

of Thessaloniki. Cognitive and neuropsychological state was evaluated by the international Mini-Mental State Examination 

(MMSE) and Clinical Dementia Score (CDR). MMSE score ranges from 0 to 30, with lower MMSE indicating more severe cog-

nitive decline, whereas CDR is a 5-point scale (0, 0.5, 1, 2, 3) with higher score representing a severe AD. The 24 participants

formed three groups depending their MMSE score: Controls, Mild AD and Moderate AD. Fourteen patients (8 females and 6

males) were diagnosed with AD, from which 6 patients with moderate AD (MMSE score 14 - 16) and 8 with mild AD (MMSE

score 18 – 23), whereas 10 subjects formed the control group. The duration of the disease was measured in months and

the median value was 25 with IQR range (Q1-Q3) being 28.5 - 24 months. Concerning the AD groups, no dementia-related

comorbidities have reported. The average MMSE and CDR for the AD groups was 20 (16–21.5) and 1 (0.625–2) respectively

and for controls 30 and 0, apparently. Also, participants among the groups had approximately the same age: 62.5 (61.25–

68.25) for moderate AD, 73.5 (77.25–68.5) for mild AD and 67 (72–62.25) for controls. The education level was recorded for

each participant on a scale ranging from 6 to 16 years corresponding to primary (6 years), secondary (12 years) and higher

education (16 years). Statistical significance analysis has been performed between the three groups with Welch ANOVA

concerning age ( p-value = 0.124, F(2,21) = 2.473) and with non-parametric Kruskal-Wallis test for MMSE score ( χ2 = 21.913,

p − value < 0.001 , with mean rank MMSE of 19.5 for controls, 10.5 for mild AD and 3.5 for moderate AD). Analysis was es-

tablished to ensure that there are not statistically significant differences between subject groups (Controls, mild AD patients
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Table 2 

Description of patients’ demographic characteristics along with the neuropsychological factors. 

Demographic characteristics Neuropsychological factors 

Patient Gender Age Level of 

Education 

MMSE CDR Duration of illness 

(months) 

Disease stage 

(severity) 

1 female 57 secondary 16 2 48 Moderate 

2 female 77 secondary 23 0.5 12 Mild 

3 female 79 primary 20 1 24 Mild 

4 female 78 primary 22 0.5 18 Mild 

5 male 70 higher 22 0.5 24 Mild 

6 female 77 primary 14 2 36 Moderate 

7 male 63 primary 18 1 24 Moderate 

8 male 69 primary 20 1 30 Mild 

9 female 67 secondary 20 1 24 Mild 

10 male 71 primary 22 0.5 24 Mild 

11 male 62 secondary 16 2 24 Moderate 

12 female 64 higher 20 1 12 Mild 

13 male 70 primary 14 2 24 Moderate 

14 female 61 secondary 14 2 36 Moderate 

Total 8 females – 7 primary – – – 6 Moderate 

6 males 5 secondary 

2 higher 

8 Mild 

Median (IQR) – 69.5 

(63.25–75.5) 

– 20 (16–21.5) 1 (0.625–2) 25.00 (28.5–24.0) –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and moderate AD patients) regarding age and that there is a significant association between the 3 groups and the MMSE

score. Table 2 presents a description of patients’ characteristics. 

2.2. Data acquisition 

The EEG recordings were performed in the EEG examination room of the 2nd Department of Neurology of AHEPA Gen-

eral University Hospital of Thessaloniki by an experienced team of neurologists. Each participant received a routine EEG

recording in the Nihon Kohden EEG 2100 device. The electrode placement was in accordance to 10–20 International Ref-

erence System and 19 electrodes were used (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2)

and 2 reference electrodes placed in the participant’s earlobes (A1 and A2) for skin-electrode impedance check, accord-

ing to the manual of the device. Vertical electro-oculogram (EOG) was recorded by electrodes placed above and below the

right eye and horizontal electro-oculogram (EOG) was recorded by electrodes placed at the outer corner of the left eye.

The recording montages were anterior-posterior bipolar and referential montage using Cz as the common reference and the

anterior-posterior montage was used for the analysis. The recordings were received under the range of the following pa-

rameters of the amplifier: Sensitivity: 10 μV/mm, time constant: 0.3 s, and high frequency filter at 70 Hz. Participants were

in an upright seated position, in a resting state with their eyes closed. Each recording was sampled at 500 Hz and lasted

approximately 13 min (ranging from 11 to 17 min) for AD patients and approximately 21 min (ranging from 20 to 23 min)

for control group. In total, 179 min of EEG recordings from AD patients and 188 min with normal EEG data were collected,

forming a database of approximately 6 h. 

2.3. EEG signals processing 

The EEG recordings are exported in “.eeg” format and are processed using Matlab platform and the EEGLAB toolbox. The

log file as exported by the Nihon Kohden EEG 2100 device, provided information about any possible artifacts during each

EEG recording (muscle activity, blinking, swallowing), which are marked and removed. In the analysis, EEG information is

extracted concerning anterior-posterior longitudinal bipolar montage (also known as “double banana”), which is the most

commonly used montage in clinical practice. Longitudinal bipolar montage is an appropriate montage to see the symmetry

of EEG dynamics between regions of the two hemispheres and the α rhythm in the occipital region and provides less

external noise compared with referential montage. Afterwards, a Butterworth notch filter is applied to remove the 50 Hz

power line noise oscillations from the EEG recordings and a high-pass FIR (Equiripple) digital filter with a cut-off frequency

at 0.5 Hz to remove low frequency oscillations. Then, each filtered EEG recording is segmented in non-overlapping epochs

of 10 s in line with study [8] and statistical features are extracted from the 10-s EEG segments. In order to extract spectral

features in each frequency sub-band of interest, five equiripple FIR filters are designed using the FIRPM function and applied

to each 10-s EEG segment. Therefore, five band-pass filters (0.5–4 Hz, 4–8 Hz, 8–13 Hz and 13–30HZ, 30–60 Hz) are designed.
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2.4. Feature extraction 

In the literature, a variety of features has been suggested to elucidate the EEG waveforms related to Alzheimer’s Disease.

In the present study, six statistical features are extracted from the 10-s segments, five spectral features are calculated in

each sub-band of interest corresponding to the five EEG rhythms ( δ, θ , α, β and γ ) and 2 spectral features calculated for

the entire frequency spectrum. 

Six statistical features are calculated for each data segment x j of length N, namely: 

Mean , ̄x = 

1 

N 

∑ N 

j=1 
x j , j = 1 , 2 , . . . N (1) 

which is the sum of the series of variables divided by the number of variables. In statistics, the mean estimates the central

tendency of a probability distribution of a variable, meaning the tendency of the data to cluster around some central data.

The mean is a basic measure and many statistical metrics rely their calculation upon it. 

Variance , σ 2 = 

1 

N − 1 

∑ N 

j=1 

(
x j − x̄ 

)2 
(2) 

which is the mean square deviation of a data segment x j from its mean value. In statistics, the variance is the second

moment of distribution and it actually represents the width of data around its central value, the mean. 

Standard deviation ( STD ) , σ = 

√ 

1 

N − 1 

∑ N 

j=1 

(
x j − x̄ 

)2 
(3) 

which is the square root of variance. Same as variance, standard deviation is a measure of dispersion of the data around its

mean. Low values of σ indicate that the distribution is extending with less width around the mean and data points close to

the central value; however, high values of σ indicate wider dispersion. 

Skewness , γ1 = 

1 

N 

∑ N 

j=1 

[
x j − x̄ 

σ

]3 

(4) 

which is the mean cube deviation of a data segment x j from its mean value divided by its standard deviation. Skewness

is the third moment of distribution of a data segment and estimates the degree of asymmetry around the mean. Positive

values of skewness indicate that graphically the long tail of distribution is extending towards positive values of x regarding

the mean and negative values of skewness indicate asymmetry of distribution towards negative values of x . 

Kurtosis , γ2 = 

1 

N 

∑ N 

j=1 

[
x j − x̄ 

σ

]4 

(5) 

which is the mean deviation of a data segment x j from its mean value divided by its standard deviation and raised in the

power of 4. Kurtosis originated with Karl Pearson and is the forth moment of distribution. In statistics, kurtosis estimates

how peak or flat a distribution of a signal is regarding a normal distribution. Positive values of kurtosis represent graphically

a sharper distribution with regard to a normal distribution (leptokurtic) and negative values of kurtosis represent a flatter

distribution (platykurtic). 

Interquartile Range ( IQR ) , IQR = Q 3 − Q 1 (6) 

which is the difference between Q 1 and Q 3 , also known as 25th percentile (lower) and 75th percentile (upper) respectively.

The quartiles are calculated based on the median of the data. Thus, in a probability distribution, Q 1 is calculated from the

median of the lower half of the data and Q 3 from the median of the upper half of the data. 

Furthermore, several spectral features are calculated for each segment x j . Entropy measures generally characterize the

level of complexity and predictability of a signal. For each data segment x j of each channel, FIR filters are applied decom-

posing each segment into five sub-bands i of interest corresponding to the five EEG rhythms ( δ, θ , α, β , γ ). Then, spectral

features are extracted in each band and the normalized value (ranging from 0 to 1) of each feature is calculated, aiming

to optimize the comparison between different AD states. The normalized value of each feature is calculated by dividing the

feature value of each band with the total feature value, meaning the sum of features calculated for all the frequency bands.

Energy : Energ y i = 

∑ N 

j=1 
x 2 j , i = δ, θ, α, β, γ (7) 

which is the square value of a data segment x j calculated for each band i . 

Relative band power ( RBP ) , RB P i = 

Energ y i ∑ 

Energ y i 
, i = δ, θ, α, β, γ (8) 

which is based on the periodogram of the segment and shows in percentage the normalized distribution of the power in

each band concerning the total segment power. 

Shannon entropy , ShanEn = −
∑ M 

j=1 
p j log 

(
p j 

)
, (9) 
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wherein p j is the probability distribution of each data segment x j and is calculated estimating the histogram for each seg-

ment. ShanEn is a measure of complexity and is calculated for the entire frequency spectrum. 

Approximate entropy ( ApEn ) , ApEn ( m, r, N ) i = −
[
ϕ 

m +1 ( r ) − ϕ 

m ( r ) 
]
, i = δ, θ, α, β, γ (9a)

where ϕm (r) = 

∑ N−m +1 
k =1 

ln c m r (k ) 
N−m +1 and c m 

r a correlation integer c m 

r (k ) = 

count { d( k,l ) ≤ r } 
N−m +1 estimated by the distance d ( k, j ) be-

tween the vectors u(k) = [ x(k), x(k + 1), …, x(k + m-1) ] and u(l). 

According to Pincus [23] , m (pattern length) is usually 1 or 2 and r (similarity factor) takes values 0.1, 0.15, 0.25 and

0.5. Generally, it has not been proposed a specific value for each variable, optimizing ApEn. In our experiments, m = 1 and

r = 0.2 times the standard deviation of the time-series in accordance with the study [9] . High values of ApEn mean low

predictability of a segment to be followed by a similar data segment; thus, high values of ApEn characterize more complex

and irregular waveforms. However, low values of ApEn are an indicator of a simpler and more predictable signal, since it is

assumed that it is more probable for a data segment to be followed by similar data segments. 

Permutation entropy , P ermE n i = −
∫ 

p ( π) log p ( π) , i − δ, θ, α, β, γ (10)

wherein π are all the permutations of order n , which is the number of embedding dimensions and p ( π ) is the probability

of ordinal patterns π , meaning the relative frequency of ordinal patterns π . PermEn is similar to ShanEn for ordinal patterns

and is a complexity measure proposed by Bandt & Pompe [24] for arbitrary, noisy and large signals. According to their study,

n takes values n = 3, …, 7 . In our experiments, n is assigned to 3 . 

Tsallis entropy ( TsalEn ) , T salE n i = 

1 

q − 1 

(
1 −

∑ W 

u 
p q u 

)
, i = δ, θ, α, β, γ (11)

where q is any real number measuring the degree of nonextensivity with q < 1 for superextensive and q > 1 for subextensive

statistics, whereas q = 1 gives the ShanEn. TsalEn is a non-extensive entropy, meaning that the entropy of the system (i.e.

a time-series) is not correlated with the entropy of each subsystem; hence, is not the sum of entropy measures of each

subsystem [25] . In our experiments , q = 2 since EEG is considered a subextensive system (i.e., q > 1 ). 

Which is a variation of SamplEn for the scaled signal. MSE was proposed by Costa [26] mainly to overcome difficulties

and misleading results for physiological signals. MSE introduces a range for multiple time scales τ , which is used to con-

struct a coarse-grained version of the original time series. The original signal is divided in windows of length τ and the

data of each window is averaged. Each element of the coarse-grained signal is calculated based on the formula: 

Multiscale entropy (MSE) y ( 
τ ) 

j 
= 

1 

τ

∑ jτ

k = ( j−1 ) τ+1 
x k , 1 ≤ j ≤ N/τ (12)

For τ = 1 the equation gives the original signal. Generally, Costa et al. proposed a range of values m ∈ [1,2] , r ∈
[0.10,0.15,0.20,0.25,0.50] (described above for Approximate Entropy) and τ∈ [2…20] as well as many other researchers [4] . In

our experiments, m = 2 , r = 0.15 and τ = 5 after examination of several combinations for m, r and τ and are consistent with

previous studies [4,26] . However, the objective of the proposed study is not to find the best combination optimizing multi-

scale entropy and hence, an exhaustive examination of various combinations of m, r, t , is not presented. MSE is calculated

for the entire frequency spectrum. 

Sample entropy ( SamplEn ) , Sampl En ( m, r, N ) i = −l n 

ϕ 

m ( r ) 

ϕ 

m +1 ( r ) 
, i = δ, θ, α, β, γ (13)

where ϕm (r) = 

∑ N−m +1 
i =1 

c m r (i ) 
N−m +1 and c m 

r (i ) = 

count { d( i, j ) ≤ r } i � = j 
N−m +1 estimated by the distance d ( k, l ) between vectors u(k) = [ x(k),

x(k + 1), …, x(k + m-1) ] and u(l). SamplEn is similar to ApEn but it does not include the estimation of self-similar patterns.

The algorithm of Sample entropy does not include the calculation d ( k, l ) for k = l, w hile calculating the distance d ( k, l ) be-

tween the vectors u(k) and u(l) [27] . Therefore, ApEn presents a more regular system than the system actually is. In our

experiments, m = 2 and r = 0.15 as proposed in [4] 

2.5. Statistical analysis 

In order to examine the association between each of the 38 extracted features with the severity of the Alzheimer’s Dis-

ease and particularly the MMSE score, Multiregression Linear Analysis is conducted using the IBM SPSS Statistics platform.

Regression models are created separately for each channel and for clusters of channels, which are created according to the

electrode placement and the corresponding brain regions. The five electrode clusters namely Anterior (Fp1, F3, Fz, Fp2, F4),

Posterior (P3, O1, Pz, P4, O2), Central (C3, Cz, C4), Temporal/left (T3, T5, F7) and Temporal/right (T4, T6, F8) are defined in

previous studies ([14, 5]). In these models, the MMSE score served as the dependent variable and each EEG feature as the

independent/predictor. All the assumptions of Linear Regression are examined (data normality, linearity, independence, ho-

moscedasticity, multicollinearity and residuals normality) and the stepwise method is chosen, wherein the predictors of the

model are chosen based on the largest Pearson correlation. Finally, ANOVA analysis is also performed to evaluate the sig-

nificance of the obtained models and results are presented below. Normality and homogeneity of variances were examined

with Shapiro-Wilk test and Levene’s test respectively. In Fig. 1 the electrode clusters are shaded in different colors. 
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Fig. 1. Electrode clusters according to the electrode sites. Anterior cluster is shaded with yellow, central cluster is shaded with light blue, posterior cluster 

is shaded with grey, temporal right and left cluster are shaded with orange and light green, respectively. 

Table 3 

Regression results in terms of R 2 for each electrode cluster. 

Electrode cluster highest R 2 P-value 

Anterior (Fp1, F3, Fz, Fp2, F4) 0.293 0.0 0 0 

Central (C3, Cz, C4) 0.335 0.009 

Temporal/left (T3, T5, F7) 0.360 0.012 

Temporal/right (T4, T6, F8) 0.355 0.0 0 0 

Posterior (P3, O1, Pz, P4, O2) 0.365 0.0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

The evaluation of regression models is conducted with the square value of Multiple Correlation Coefficient ( R 2 ), which

shows the proportion of variation of the dependent variable (MMSE) explained by the predictor [17] . P-value is also reported

to confirm that the null hypothesis is rejected and thus, there is a significant linear association between the dependent and

the independent variable ( p-value < 0.05 ). The best statistically significant R 2 , while avoiding feature multicollinearity for

each cluster and for each channel, is presented at Tables 3 and 4 , respectively. Each R 2 is chosen only if it is statistically

significant ( p-value < 0.05 ) and after examining the Variance Inflation Factor (VIF) values for each model. VIF is a statistic for

multicollinearity, meaning the ability of an independent variable to be able to predict another independent variable. Multi-

collinearity occurs when variables are highly correlated with each other and produces misleading results. In the presented

results the VIF value is below the accepted value of 10.0 in all models. Also, the significant regression models in terms of

standardized Beta weights for each electrode site and electrode cluster are presented in Table 5 . 

The best R 2 (0.365) of significant regression models is obtained for the posterior cluster, which contains the electrodes

P3, O1, Pz, P4 and O2, whereas the worst R 2 (0.293) is shown for the anterior cluster and the electrodes Fp1, F3, Fz, Fp2, F4.

The left temporal cluster (T3, T5, F7) also showed good computed R 2 (0.360) followed by the right temporal cluster (T4, T6,

F8), wherein the R 2 value did not differ much (0.355), and of central cluster with C3, Cz and C4 (0.335). 

Multiregression Linear Analysis is also conducted for each electrode individually. The best correlation in terms of R 2 is

obtained for electrode O2 (0.542) followed by electrode F4 (0.513), electrode T5 (0.488), electrode O1 (0.478), electrode T6

(0.468), electrode F8 (0.448), electrode P3 (0.441), electrode P4 (0.427), electrode C4 (0.420), electrode Cz (0.420), electrode

Pz (0.416), electrode T4 (0.416), electrode F3 (0.412), electrode T3 (0.412), electrode F7 (0.398), electrode C3 (0.397), elec-

trode Fp1 (0.372) and electrode Fz (0.339). The worst value of R 2 and hence lower association with MMSE score showed
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Table 4 

Regression results in terms of R 2 for each electrode. 

Electrode highest R 2 P-value 

Fp1 0.372 0.002 

F3 0.412 0.017 

Fz 0.339 0.004 

Fp2 0.202 0.032 

F4 0.513 0.0 0 0 

P3 0.441 0.0 0 0 

O1 0.478 0.007 

Pz 0.416 0.014 

P4 0.427 0.002 

O2 0.542 0.001 

C3 0.397 0.0 0 0 

Cz 0.420 0.0 0 0 

C4 0.420 0.001 

T3 0.412 0.0 0 0 

T5 0.488 0.0 0 0 

F7 0.398 0.0 0 0 

T4 0.416 0.044 

T6 0.468 0.018 

F8 0.448 0.004 

Fig. 2. Depiction of the MMSE correlation with each EEG electrode site according to the obtained results of R 2 . The correlation of the predictors of the 

corresponding channel with MMSE score is illustrated with a colorbar. Lighter shades of blue in electrodes correspond to lower values of R 2 , whereas 

darker shades of blue corresponds to a higher value of R 2 and thus, higher correlation with MMSE. 

 

 

 

 

 

 

 

 

the electrode Fp2 (0.202). Fig. 2 shows the correlation of each channel in the prediction of MMSE score according to the

computed R 2 for each electrode site and Fig. 3 represents the distribution of the obtained R 

2 in each EEG channel . 

According to Pearson correlation and the obtained regression models, the EEG markers that predicts the variation of

MMSE score for all electrodes are presented in Fig. 4 . PermEn δ is extensively shown in the significant regression model of

16 electrodes. RBP θ , SamplEn δ , and Mean are frequently shown in 14 electrodes and SamplEn β is shown in 13 electrodes. In

12 electrodes PermEn β and RBP γ , is shown and in 10 electrodes the PermEn θ and MSE. The rest EEG features are shown in

the regression models of less than 10 electrodes. 

Furthermore, the correlation of EEG predictors with MMSE in each electrode site, concerning each EEG rhythm is depicted

in Fig. 6 . 

4. Discussion 

In this study, a correlation of the variation of MMSE score with EEG features related to the EEG signal complexity is

presented. Several statistical and spectral features are extracted from EEG recordings of 10 control subjects, 8 patients with
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Table 5 

Regression model in terms of standardized Beta weights for each electrode and electrode cluster. Significant results are presented in bold (Beta > 0.3). 

Standardized Beta weights 

Predictor anterior posterior central temporal temporal Fp1 F3 Fz Fp2 F4 P3 O1 Pz P4 O2 C3 Cz C4 T4 T6 F8 T3 T5 F7 

PermEn δ 0.336 ∗∗∗ – 0.132 ∗ ∗∗ 0.148 ∗∗∗ 0.263 ∗ ∗∗ 0.233 ∗ ∗∗ 0.294 ∗ ∗∗ 0.125 ∗ ∗∗ 0.404 ∗∗∗∗∗ 0.368 ∗∗∗ 0.107 ∗∗∗ 0.054 ∗ – 0.258 ∗∗∗ - 0.103 ∗∗∗ 0.286 ∗∗∗ – 0.280 ∗∗∗ 0.223 ∗ ∗∗ 0.447 ∗∗∗ 0.185 ∗ ∗∗ – 0.290 ∗∗∗ 0.120 ∗ ∗∗

SamplEn θ 0.087 ∗∗∗ 0.106 ∗∗∗ 0.377 ∗∗∗ 0.183 ∗∗∗ 0.231 ∗ ∗∗ – – 0.257 ∗ ∗∗ 0.180 ∗∗∗ 0.230 ∗ ∗∗ 0.287 ∗∗∗ 0.465 ∗∗∗ – 0.453 ∗∗∗ 0.336 ∗∗∗ 0.315 ∗∗∗ 0.504 ∗∗∗ 0.340 ∗∗∗ 0.654 ∗∗∗ 0.155 ∗∗∗ 0.559 ∗∗∗ – 0.170 ∗∗∗ –

Mean – −0.093 ∗∗∗ −0.041 ∗∗∗ −0.075 ∗∗∗ −0.149 ∗ ∗∗ −0.125 ∗ ∗∗ −0.086 ∗∗∗ – – −0.189 ∗ ∗∗ −0.224 ∗∗∗ −0.147 ∗∗∗ −0.175 ∗∗∗ −0.099 ∗ ∗∗ −0.092 ∗∗∗ −0.069 ∗∗∗ – – −0.114 ∗∗∗ −0.135 ∗ ∗∗ −0.157 ∗∗∗ – −0.120 ∗ ∗∗ −0.090 ∗∗∗

RBP θ −0.174 ∗ ∗∗ −0.120 ∗∗∗ −0.362 ∗∗∗ −0.186 ∗∗∗ −0.249 ∗ ∗∗ −0.083 ∗∗ −0.138 ∗ ∗∗ – −0.200 ∗ ∗∗ – −0.158 ∗∗∗ – −0.158 ∗∗∗ −0.307 ∗∗∗ −0.146 ∗∗∗ −0.410 ∗∗∗ −0.229 ∗∗∗ −0.402 ∗∗∗ −0.271 ∗∗∗ −0.236 ∗ ∗∗ −0.165 ∗ ∗∗ −0.179 ∗ ∗∗ – –

SamplEn β – – 0.190 ∗∗∗ 0.151 ∗∗∗ – – 0.181 ∗ ∗∗ 0.310 ∗∗∗ – 0.194 ∗ ∗∗ 0.082 ∗∗ – – 0.348 ∗∗∗ 0.119 ∗∗∗ 0.170 ∗∗∗ – 0.141 ∗∗∗ 0.085 ∗ 0.181 ∗∗∗ 0.148 ∗ ∗∗ – 0.130 ∗ ∗∗ 0.298 ∗ ∗∗

PermEn β −0.248 ∗∗∗ −0.285 ∗∗∗ −0.12 ∗∗∗ −0.382 ∗∗∗ −0.206 ∗∗∗ −0.341 ∗∗∗ −0.358 ∗∗∗ −0.16 ∗∗∗ – −0.265 ∗∗∗ −0.209 ∗∗∗ −0.398 ∗∗∗ −0.266 ∗∗∗ – – – – – −0.231 ∗∗∗ – −0.477 ∗∗∗ −0.378 ∗∗∗ −0.170 ∗∗∗ −0.336 ∗∗∗

RBP γ – 0.244 ∗∗∗ 0.035 ∗ 0.054 ∗∗ – 0.159 ∗ ∗∗ – 0.169 ∗ ∗∗ – 0.181 ∗ ∗∗ – 0.437 ∗∗∗ 0.195 ∗∗∗ 0.212 ∗∗∗ 0.517 ∗∗∗ – – 0.083 ∗∗ – 0.240 ∗∗∗ – 0.140 ∗∗∗ 0.360 ∗∗∗ 0.210 ∗∗∗

PermEn θ – 0.218 ∗∗∗ 0.144 ∗∗∗ 0.075 ∗∗∗ – −0.192 ∗ ∗∗ −0.087 ∗∗ – – – 0.217 ∗∗∗ 0.284 ∗∗∗ – 0.483 ∗∗∗ 0.184 ∗∗∗ – 0.153 ∗∗∗ 0.121 ∗ ∗∗ 0.110 ∗∗ – – 0.267 ∗ ∗∗

MSE 0.151 ∗ ∗∗ 0.087 ∗∗∗ 0.123 ∗ ∗∗ 0.076 ∗∗∗ 0.142 ∗ ∗∗ – – 0.086 ∗∗∗ – 0.079 ∗ ∗ 0.095 ∗∗∗ 0.270 ∗∗∗ 0.132 ∗ ∗∗ 0.254 ∗ ∗∗ 0.053 ∗∗∗ – 0.099 ∗∗∗ – 0.180 ∗∗∗ – – 0.250 ∗∗∗ –

SamplEn α – 0.251 ∗∗∗ – 0.222 ∗∗∗ 0.253 ∗ ∗∗ 0.152 ∗ ∗∗ – – – 0.095 ∗ ∗ 0.310 ∗∗∗ 0.232 ∗∗∗ 0.150 ∗∗∗ 0.148 ∗∗∗ – – – – 0.662 ∗∗∗ – 0.458 ∗∗∗ 0.351 ∗∗∗ – –

Energy γ – 0.113 ∗∗∗ 0.099 ∗∗∗ – – 0.207 ∗ ∗∗ 0.153 ∗ ∗∗ – – 0.189 ∗ ∗∗ 0.168 ∗ ∗∗ 0.174 ∗ ∗∗ – 0.100 ∗∗∗ 0.469 ∗∗∗ – – – 0.060 ∗ – – – −0.210 ∗∗∗ –

ShanEn – – 0.132 ∗ ∗∗ – – – – – – – 0.054 ∗∗ 0.067 ∗∗ 0.075 ∗∗ – 0.071 ∗∗∗ 0.147 ∗∗∗ 0.091 ∗∗∗ 0.059 ∗∗ 0.054 ∗ – – – –

SamplEn δ – – 0.137 ∗ ∗∗ −0.140 ∗∗∗ – −0.272 ∗∗∗ – – – −0.25 ∗∗∗ – 0.486 ∗∗∗ 0.092 ∗∗∗ – 0.429 ∗∗∗ – – – – – – −0.362 ∗∗∗ – −0.318 ∗∗∗

Kurtosis – – – −0.101 ∗∗∗ −0.064 ∗∗∗ – – – – −0.051 ∗ ∗ – −0.067 ∗∗∗ −0.064 ∗∗∗ – −0.084 ∗∗∗ – – – −0.041 ∗ −0.086 ∗ ∗∗ −0.143 ∗∗∗ – −0.070 ∗∗∗ –

ApEn γ −0.193 ∗∗∗ −0.227 ∗∗∗ – – −0.195 ∗∗∗ −0.081 ∗∗ – – – – – – −0.189 ∗∗∗ – −0.405 ∗∗∗ −0.267 ∗∗∗ – −0.252 ∗ ∗∗ −0.187 ∗ ∗∗ −0.145 ∗ ∗∗ – – – –

PermEn a – 0.245 ∗∗∗ −0.189 ∗ ∗∗ 0.084 ∗∗∗ – – – −0.214 ∗∗∗ – – – 0.571 ∗∗∗ – 0.080 ∗ 0.296 ∗∗∗ – −0.233 ∗ ∗∗ – 0.143 ∗ ∗ – 0.103 ∗∗ – – –

Energy α – 0.211 ∗∗∗ – 0.179 ∗∗∗ – – – 0.124 ∗∗∗ – 0.200 ∗ ∗∗ 0.167 ∗ ∗∗ – 0.385 ∗∗∗ – 0.151 ∗ ∗∗ – – – – – 0.167 ∗ ∗∗ 0.268 ∗∗∗ – –

RBP δ – – −0.260 ∗∗∗ −0.158 ∗∗∗ – – – – – −0.310 ∗∗∗ – – – −0.194 ∗ ∗∗ – −0.180 ∗∗∗ – −0.144 ∗ ∗∗ – – – −0.175 ∗ ∗∗ −0.190 ∗∗∗ −0.410 ∗∗∗

Variance – – – −0.126 ∗∗∗ – −0.155 ∗ ∗∗ −0.133 ∗ ∗∗ – – – – – – – – – – – −0.145 ∗∗∗ – −0.101 ∗∗ −0.242 ∗∗∗ – −0.157 ∗ ∗∗

Energy θ – – −0.090 ∗∗∗ – – – – – – −0.28 ∗∗∗ – – −0.380 ∗∗∗ −0.115 ∗∗∗ – – – – – −0.239 ∗ ∗∗ – – – −0.133 ∗ ∗∗

Energy δ – – – – – −0.165 ∗ ∗∗ – – – – – – −0.102 ∗ – −0.311 ∗∗∗ – – – – −0.075 ∗ ∗ −0.075 ∗∗∗ −0.140 ∗ ∗∗ – –

STD – – – – – 0.206 ∗∗∗ 0.286 ∗∗∗ – 0.084 ∗∗∗ – – – – 0.121 ∗∗∗ – – – – 0.242 ∗∗∗ – – – – –

ApEn δ – – – – – 0.120 ∗ ∗∗ – – – – – 0.065 ∗∗ – – – – – – 0.079 ∗ – – – – 0.145 ∗∗∗

ApEn θ – – 0.211 ∗∗∗ 0.145 ∗∗∗ – – – 0.142 ∗∗∗ – – 0.126 ∗∗∗ 0.270 ∗∗∗ 0.475 ∗∗∗ – – – – – – – – – – –

ApEn α – – −0.132 ∗ ∗∗ – – – – – – 0.110 ∗∗∗ – – – – – −0.306 ∗∗∗ – −0.293 ∗ ∗∗ – – 0.213 ∗∗∗ – – –

ApEn β – – 0.042 ∗∗∗ 0.037 ∗∗ 0.023 ∗ – – – – – 0.136 ∗ ∗∗ – 0.299 ∗∗∗ – – – – – – – – 0.061 ∗∗∗ 0.080 ∗∗∗ –

Energy β – – 0.101 ∗ ∗∗ 0.128 ∗∗∗ 0.095 ∗ ∗∗ – −0.046 ∗ – – – – 0.091 ∗∗ – – – – – – 0.117 ∗∗∗ 0.227 ∗∗∗ – – –

IQR – – 0.044 ∗∗∗ 0.207 ∗∗∗ – – – – – – – – – – 0.061 ∗∗ – – – – – 0.191 ∗∗∗ 0.368 ∗∗∗ – 0.260 ∗∗∗

RBP β – – 0.257 ∗ ∗∗ 0.052 ∗ – – – – – – – 0.136 ∗ ∗∗ 0.121 ∗∗∗ 0.064 ∗∗ – – – – – – – – – 0.153 ∗ ∗∗

RBP α – – – – – – – – – – – – – – – – – – 0.224 ∗∗∗ – – – 0.520 ∗∗∗ 0.191 ∗∗∗

SamplEn γ – – – – – – – – – – – – – – – – 0.399 ∗∗∗ – – – – – – –

PermEn γ – – – – – – – – – – – – −0.363 ∗∗∗ – – – – – – −0.297 ∗ ∗∗ – – – –

Skewness – – – −0.054 ∗∗ – – – – – – – – – – 0.074 ∗ ∗∗ – – – – – – – – –

TsalEn θ – – – 0.044 ∗∗∗ – – – – – – – 0.052 ∗∗ – – – – – – 0.048 ∗ ∗ – – – – –

TsalEn δ – – 0.029 – – – 0.046 ∗∗ – – – – – – – – – – – – – – – – –

TsalEn β – – – – – – – – – – – – – – – – – – – – 0.047 ∗∗ – – –

TsalEn γ – – – – – – – – – – – – – – – – – – 0.040 ∗ – – – – –

TsalEn α – – – – – – – – – – – – – – – – – – – – – – – –

∗p -value < 0.05, ∗∗p -value < 0.01, ∗∗∗p -value < 0.001. 
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Table 6 

A comparative representation of the most recent studies that have associated the MMSE score with the EEG feature changes due to AD progression. 

Author Year Dataset Dataset duration Features Results 

Fraga et al. [19] 2013 27 controls 304 s/subject = 6 h, 

25 min 

amplitude modulation ↓ beta band amplitude modulation as 

AD progresses 

27 mild AD 

22 moderate AD ↑ theta band amplitude modulation as 

AD progresses 

Yang et al. [4] 2013 15 MCI 30 s/subject = ∼1 h multiscale entropy ↓ multiscale entropy (low τ ) of 

occipitoparietal region as AD 

progresses 

69 mild AD 

24 moderate AD ↑ theta power in AD compared to CN 

Garn et al. [22] 2015 118 probable AD 

patients 

158 s/subject = 5 h, 

11 min 

relative band power, coherence, 

canonical correlation, auto-mutual 

information (AMI), Shannon entropy 

(ShEn), Tsallis entropy (TsE) 

coherence and canonical correlation 

correlated with MMSE 

↑ relative theta power in AD 

↑ auto-mutual information in AD 

Waser et al. [5] 2016 79 probable AD 

patients 

180 s/subject = 3 h, 

57 min 

coherence, partial coherence, phase 

shift, Granger causality, conditional 

Granger causality, canonical 

correlation, dynamic canonical 

correlation, cross-mutual information 

R 2 = 0.3 ∼ 0.386 

for coherence, partial coherences, 

phase shift, Granger causalities, 

conditional Granger causalities, and the 

cross-mutual information 

↑ of EEG synchrony for MMSE > 20 

↓ of EEG synchrony for MMSE < 20 

Coronel et al. [13] 2017 79 mild to 

moderate AD 

patients 

168 s/subject = 3 h, 

41 min 

auto-mutual information (AMI), 

Shannon entropy (ShEn), 

Tsallis entropy (TsE), multiscale 

entropy (MsE) and spectral entropy 

(SpE) 

R 2 = 0.30 ∼ 0.46 higher at T7 and F7 

↑ of AMI, SpE, MsE as AD progresses 

Tzimourta et al. 2018 10 controls 

8 mild AD 

6 moderate AD 

∼16 min/subject = 6 h, 

30 min 

Mean, Variance, Skewness, Kurtosis, 

Standard deviation, IQR, Energy, 

Relative Band Power, Shannon 

Entropy, Approximate Entropy, 

Permutation entropy (PermEn), 

Tsallis entropy, Multiscale entropy, 

Sample entropy (SamplEn) 

R 2 = 0.202 – 0.542, higher at O2 and F4 

R 2 = 0.365 for posterior cluster 

↓ PermEn of δ rhythm in AD, 

↓ SamplEn of θ rhythm in AD 

↑ Relative θ power in AD 
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Fig. 3. Distribution of the obtained R 2 after the Multiregression Analysis for each EEG channel. Electrodes O2 and F4 shows the highest correlation with 

MMSE score and thus the severity of the Alzheimer’s Disease, whereas the lowest association with MMSE is shown in the EEG features extracted from 

electrode Fp2. 

Fig. 4. Representation of the contribution of significant predictors in the final regression model of 19 electrodes. Each bin corresponds to a different EEG 

feature and each number in y-axis represents an electrode. PermEn θ is the feature that contributed the most in the final regression model of 16 electrodes, 

whereas Tsallis Entropy in all of the 5 five bands contributed the least. 

 

 

 

 

 

 

mild AD and 6 patients with moderate AD. Multiregression linear analysis is performed to examine the best model of EEG

features that predicts the MMSE score and ANOVA test is also conducted to evaluate the significance of the regression

models. The proposed analysis shows significant results in the association of MMSE score with certain complexity EEG

features. Statistically significant results of Multiregression linear analysis in terms of Multiple Correlation Coefficient ( R 2 )

indicated high association of the MMSE with simple EEG features and particularly Relative band power, Sample Entropy and

Permutation Entropy, whereas Approximate Entropy, Shannon Entropy and Multiscale Entropy are also significant measures

in the regression models of many electrode sites. 
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Fig. 5. Representation of the contribution of significant predictors in the final regression model of 5 electrode clusters. Each bin corresponds to a different 

EEG feature and each number in y-axis represents a cluster. SamplEn θ , RBP θ , PermEn β and MSE are the features that contributed the most in the final 

regression model of all the five electrode clusters. Nine features did not shown in the final regression model of any electrode cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results of the proposed analysis are consistent with previous studies ([17, 18, 16, 3]) concerning the decline of Relative

Power of α, β and γ rhythm in AD patients and the dominance of low frequency bands ( δ and θ rhythm). RBP δ and RBP θ
are negatively correlated with MMSE score variation, whereas RBP α , RBP β , and RBP γ showed positive correlation. Posterior

and left-sided and right-sided temporal area have also shown higher correlation with AD from other brain regions as have

been inferred to previous studies [11,13] . 

SamplEn indicated positive correlation with MMSE for θ , α, β and γ rhythm. Concerning δ rhythm, SamplEn is positively

correlated for O1, O2 and Pz sites, while it is negatively correlated for left-sided temporal cluster and Fp1, F3, F4, F7 and

T3 electrode sites. Abasolo et al. 2006 [11] also reported significant decrease of SamplEn at O1, O2, P3 and P4 sites in AD

patients. An increased complexity of lower bands of independent neural regions of frontal and temporal/left brain sides,

may indicate disintegration of different brain parts and of interneuronal corporation [21] . 

PermEn is a significant predictor of the MMSE score and has been previously reported ([8, 7]) that PermEn is decreased

in AD patients. In this study, PermEn calculated for the entire frequency spectrum, is also decreased as the MMSE score takes

low values. However, PermEn calculated for each EEG rhythm separately, shows positive correlation with MMSE for δ and

θ rhythm in general and negative correlation with MMSE score for β rhythm and γ rhythm. Concerning PermEn α , results

for each electrode site showed positive correlation in O1, O2, P4, T4 and F8 and negative correlation for Cz and Fz electrode

sites. Results for each electrode cluster showed negative correlation only for central regions and positive correlation in

temporal/left and posterior cluster. This is a significant outcome, which assumes that the irregularity of β and γ rhythm

in AD patients is increased and is consistent with previous study [28] , while δ and θ rhythm are more predictable. These

differences among different brain structures shows diversity in neural network communication and reveals less efficient

brain organization. 

ApEn δ , ApEn θ and ApEn β are positively correlated with MMSE score, meaning that ApEn δ , ApEn θ and ApEn β decreases as

MMSE score gets lower values. As mentioned before, high values of ApEn are an indicator of more complex and chaotic sys-

tem, whereas low values indicate a more regular and more predictable signal. This result is consistent with prior literature

that there is a decline of α rhythm in resting state EEG and appearance of θ and δ rhythm [22–26] . However, former studies

([8, 9, 12]) reported lower EEG complexity in AD patients, examining ApEn in the entire spectrum and each frequency band

is not separately analyzed. Results of this study reveals the correlation of MMSE score with the decrease of complexity in δ
and θ rhythm specifically, as expressed by Approximate entropy. Therefore, EEG waveforms of more severe AD present less

complex θ or δ rhythm and more predictable dynamics. On the other hand, ApEn γ showed negative correlation with MMSE

score in Fp1, C3, C4, T4, T6, Pz, and O2 electrode sites as well as in anterior, posterior and temporal/right cluster. A recent

study [29] , had also reported enhanced γ activity in AD patients during resting-state EEG recording mainly in the midline

frontal, central-parietal and occipital areas. 

With regard to ShanEn and TsalEn, the left-sided temporal brain with ShanEn and TsalEn [13] , and parietal regions

showed most significant results in previous studies [15] . However, in this study TsalEn is not a great predictor of MMSE

score (Beta weight ranging from 0.029 to 0.052), as it has been previously reported [13] . TsalEn showed positive correlation

in all frequency bands and is chosen based on its Pearson correlation only in the significant regression models of F3, O1,

T4, F8 and in the model of left temporal and right temporal cluster. On the other hand, ShanEn of the entire frequency
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Fig. 6. Correlation of the most significant EEG markers with MMSE according to the obtained Beta weights of the Multiregression Analysis. Blue color 

represents a positive correlation of the predictor with MMSE score, whereas red color represents negative correlation of the predictor with MMSE score. 

White color represents no correlation of the predictor of each electrode with MMSE score. 

 

 

 

 

 

spectrum is a good predictor in this study, showed positive correlation with MMSE. Also, ShanEn is chosen as a significant

predictor in 9/19 channels with greatest correlation in Cz and central region. 

Yang et al. in [4] reported that MSE correlates with the progression of the Alzheimer’s Disease and for low scales of τ ,

the MSE increases as the MMSE score increases; hence, mild and very mild AD patients show more complex EEG recordings.

In this study, τ is assigned to 5 and MSE is also positively correlated with MMSE. This finding suggests that it is easier to

predict EEG background activity in AD patients than in control subjects [30] . Moreover, MSE shows good correlation with
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MMSE score in 10/19 channels and in four electrode clusters the greatest correlation is shown in temporal/right region and

O1 site. 

Statistical EEG features have also been good predictors of MMSE variation. Mean, and Kurtosis showed negative correla-

tion with the dependent variable in 14 and 8 electrode sites respectively and 4 and 2 electrode clusters. IQR and Standard

deviation indicated positive correlation in less electrode sites (5 and 4 respectively). A comparison of the proposed study

with previous studies is shown in Table 6 . 

5. Conclusion 

Alzheimer’s Disease is a chronic neurological disorder affecting the cognitive state of a large group of elderly people

worldwide. Over the past few years, a great interest on the progress of the disease severity, as expressed from MMSE score,

with features extracted from EEG recordings has emerged. To the best of the author’s knowledge, this is the first compre-

hensive study combining simple complexity EEG features of EEG bands and statistical features to create a regression model

that predicts MMSE score variation. The combination of several linear and non-linear features can provide complementary

information about the association of EEG markers with MMSE score. Previous reported studies have examined the correla-

tion of MMSE with entropy measures calculated mainly in the entire frequency spectrum. In this study, the EEG complexity

among EEG bands showed that SamplEn and PermEn indicated the best results as predictors of MMSE score in most of

the electrode sites. Also, ApEn, MSE and ShanEn showed good correlation with MMSE score variation. However, a drawback

of the proposed study is the small number of patients and the difficulty of finding AD patients without neurological co-

morbidities (depression, epilepsy, etc.) that may mislead the obtained models. Future directions of the proposed work will

focus on the association of other proposed in the literature EEG markers with MMSE score. Furthermore, an extension of the

study to Mild Cognitive Impairment (MCI) patients may be useful for the progression of the disease. Thus, in a subsequent

analysis EEG recording acquired from more patients would be analyzed and more feature combinations should be examined

to improve the method’s statistical results. 
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