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Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common type of dementia with
a great prevalence in western countries. The diagnosis of AD and its progression is performed through a
variety of clinical procedures including neuropsychological and physical examination, Electroencephalo-
graphic (EEG) recording, brain imaging and blood analysis. During the last decades, analysis of the
electrophysiological dynamics in AD patients has gained great research interest, as an alternative and
cost-effective approach. This paper summarizes recent publications focusing on (a) AD detection and (b)
the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State
Examination (MMSE) score. A total of 49 experimental studies published from 2009 until 2020, which
apply machine learning algorithms on resting state EEG recordings from AD patients, are reviewed.
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Results of each experimental study are presented and compared. The majority of the studies focus on
AD detection incorporating Support Vector Machines, while deep learning techniques have not yet been
applied on large EEG datasets. Promising conclusions for future studies are presented.
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1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative dis-
ease, both devastating for the patient and the care-
giver with 50% of the carers claiming that their
health has been negatively affected as a result of
their responsibilities to AD patients.1 According to a
2015 report,2 the worldwide prevalence of AD is over
46 million, rendering AD the most common type of
dementia. People with AD, experience difficulty in
remembering simple things, have trouble recognizing
familiar faces, can be easily frustrated and confused
and finally, tend to not realize nor accept their condi-
tion. The diagnosis is performed by experienced neu-
rologists based on patient’s clinical symptoms and a
series of diagnostic procedures.

The diagnosis is based on a series of evalua-
tion procedures, including physical and neurologi-
cal examination, biochemical tests and brain imag-
ing techniques, such as Magnetic Resonance Imag-
ing (MRI), functional Magnetic Resonance Imag-
ing (fMRI) or Computed Tomography (CT).3 The
evaluation of cognitive state is assessed with screen-
ing tests, such as the Mini Mental State Examina-
tion (MMSE) score,4 and the Montreal Cognitive
Assessment (MoCA) test.5 MMSE is a 30-scale ques-
tionnaire and the most commonly used screening
method. A low score in MMSE indicates a more
severe state of AD. On the other hand, MoCA is a
newer method proposed as an alternative to MMSE,
showing more accurate results in the diagnosis of
Mild Cognitive Impairment (MCI).6

The pathophysiology of the disorder is multifac-
torial and heterogeneous.7,8 The clinical symptoms
of the disease are varied and occur with varying
intensity at different stages of the disease. Early
stages of AD are hard to diagnose and often the
treatment starts after symptoms have occurred for
a long time. Clinical symptoms may lead to misdi-
agnosis of other disorders or dementia such as fron-
totemporal dementia; thus, differential diagnosis of
other types of dementia and AD is imperative.9 The

National Institute on Ageing and the Alzheimer’s
Association (NIA-AA) recently proposed a frame-
work10 to diagnose AD solely from biomarkers and
not from clinical symptoms.

Recently, it has been concluded that the pres-
ence of amyloid-β plaques and tau tangles is evi-
dent in the brain of an AD patient. Even though
AD can only be detected with safety in a brain tis-
sue postmortem examination, imaging biomarkers
and biofluids are able to detect amyloid-β plaques
and tau tangles in AD patients. Positron Emission
Tomography (PET) biomarkers11 and biomarkers in
vivo10,12 can diagnose AD and differentiate it from
other dementia types. In vivo biomarkers include
cerebrospinal fluid amyloid-β and tau tangles. How-
ever, amyloid-β depositions and tau tangles may not
be associated with cognitive decline13 nor be the pri-
mary cause of AD.10

Brain lesions evident in brain biopsies or autop-
sies of AD patients (initially labeled as “senile
dementia”) have been recorded since the middle
of the previous century.14 Clinically, dementia was
impossible to differentiate and its diagnosis was
based on autopsy findings that did not have any diag-
nostic benefit.

Since Electroencephalogram (EEG) is a cost-
effective and reliable diagnostic method found not
only in hospital equipment but also in commercial
wearable devices, EEG researchers have set their
sights on correlating the quantitative EEG features
with detection and progression of AD. Alterations
in EEG features found in patients with demen-
tia either in resting-state15 or during a working
memory task16,17 and their association with cog-
nitive functions have been the research subject in
recent decades. The first proper clinical research per-
formed on electroencephalographs, observed abnor-
mal EEG activity in all subject cases with AD and
concluded that the delta (δ) wave activity was shown
in patients’ EEG, mainly in the temporal, occipi-
tal and parietal areas of one hemisphere.18,19 These
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findings were confirmed in studies performed on a
10-channel electroencephalograph.20 Hughes et al.20

studied EEGs from patients with AD and observed
dispersed slow waves in patients with dementia in
resting state, particularly in those with increased
severity. The study by Rae-Grant et al.21 showed
severe brain lesions. In EEG recordings from AD
patients, there was a slowing in background activity
and the and the enhancement of δ wave by increase of
δ wave frequency band power.21 In addition, numer-
ous focal abnormalities, peaks, sharp waves, asym-
metric and triphasic waves were observed. A correla-
tion between neuronal loss and disease’s severity was
seen during autopsy in a portion of patients with AD.
Furthermore, there has been a correlation between
decreased Corticotropin Releasing Factor (CRF) and
reduced oxygen in the brain with the appearance of
slow EEG waves and cognitive decline.22

Nowadays, EEG studies are carried out with
more sophisticated instruments and are able to man-
age more spatial information.23 In the last two
decades, significant research has been conducted on
AD-related EEG analysis. Researchers have studied
the resting state EEG with statistical features,24,25

spectral features extracted from Fourier Trans-
form26,27 time-frequency analysis features extracted
from Wavelet Analysis,28,29 nonlinear features and
chaos theory,30–33 aiming to examine the complex-
ity, the slowing and the synchronization of EEG in
AD.26,27,34 Therefore, signal processing methodolo-
gies and techniques are constantly evolving in order
to better study EEG abnormalities occurring in AD.

This paper reports experimental studies that aim
to automatically detect AD from resting-state EEG
data or to correlate the quantitative characteristics of
EEG recordings from patients with AD, with MMSE
score. This systematic review focuses on a compre-
hensive and objective presentation of the most recent
experimental studies. The methodological approach
used to find relevant studies follows the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement,35an established pro-
tocol for identification, selection and analysis of
research records. The PRISMA statement is an
established and widely accepted methodology for
reporting systematic reviews and it was selected with
purpose to validate and enhance the credibility of the
literature review and limit its objective. A structured
summary of the proposed research methodology is

Fig. 1. Structured summary of the proposed systematic
review.

presented in Fig. 2, according to the PRISMA guide-
lines.36

2. Research Methodology

The literature search was performed on June 2020
using the most popular and comprehensive search
engines for scientific articles: Elsevier’s Scopus,
IEEE Xplore, Elsevier’s ScienceDirect and MED-
LINE PubMed. The search was limited to explore
recent studies (until 10 years ago) that focus exclu-
sively on EEG analysis in AD and its stages while
excluding cases of MCI. Therefore, only studies con-
taining the keywords “Alzheimer’s” and “EEG” in
the title or abstract of the paper were included.
On the other hand, studies containing the keywords
“mouse”, “mice” or “MCI” in the paper’s title or
abstract were excluded.
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After the first search results, during the screen-
ing phase, theoretical studies such as systematic
Reviews, Books and Book Chapters of nonexper-
imental studies were excluded. Articles written in
a language other than English, corrections to pub-
lished articles (Erratum/Corrigendum), articles pre-
sented at scientific Conferences as well as Abstract
papers and Poster presentations were also removed.

In the final stage, eligibility criteria are applied.
More than two eminent independent researchers
skimmed the papers for eligibility. Initially the
paper’s title and abstract were read by the
researchers and then specific sections of the paper
(i.e. Methodology and Discussion), wherever needed
to clarify the objective and the methodology of
the paper. Then, each researcher reported the main
aspects of the experimental papers in a data extrac-
tion sheet. For each experimental study all the 27
items listed in Ref. 36 are extracted and organized
into 5 groups, namely:

• Study rationale, wherein the objective of the paper
is described

• Study population, which incorporates the number
of subjects, their MMSE score, their demographic
characteristics and the name of the EEG database
(if reported)

• Experimental protocol, where the electrodes, the
brain ROIs, the participants’ state during record-
ing are reported

• Methodology, including the preprocessing step,
the feature extraction, the classification/statistical
analysis and

• Results, wherein the findings from the systematic
literature review are reported

Afterwards, the data sheets were examined. In case
of disagreement between the researchers, the papers
were marked and discussed thoroughly at the end
of the process to decide whether the paper met the
inclusion criteria or not.

Thus, studies that fell in one or more of the fol-
lowing categories were excluded:

(1) Inaccessibility (i.e. invalid Digital Object Iden-
tity document (DOI), inability to find and/or
obtain the study)

(2) Application of EEG analysis methodology to
animals (e.g. rats, mammals).

(3) Studies exploring the effect of medication on
patients’ EEG recordings

(4) Non EEG-based study (e.g. Functional Mag-
netic Resonance Image analysis, Magnetoen-
cephalography (MEG), Transcranial Magnetic
Stimulation with EEG)

(5) Nonresting state EEG studies (e.g. Sleep stud-
ies,Event Related Potentials)

(6) Application of EEG analysis methodology
to patients with other dementias (e.g. fron-
totemporal dementia, Lewy body dementia)
and/or comorbidities (e.g. epilepsy, depres-
sion, schizophrenia, Autism Spectrum Disor-
der, diabetes, stroke, Creutzfeldt-Jakob disease,
migraine).

(7) Application of EEG analysis methodology to
nonage-matched subjects

(8) Neurofeedback studies
(9) Studies presenting and evaluating EEG record-

ing devices
(10) Studies applying invasive methods (e.g. Deep

Brain Stimulation)

3. Survey of EEG Analysis Methods
for AD

The database search found 1494 papers in total from
all 4 search engines. Then, using the Mendeley tool,
872 duplicate records were detected and removed
from a total of 1492 records, proceeding to the first
evaluation phase.

From the 620 records that have been extracted,
theoretical studies, such as Systematic Reviews (36),
Books and Book Chapters of nonexperimental stud-
ies (41), articles written in a language other than
English (5), corrections to published articles (Erra-
tum/Corrigendum) (5), papers presented at scien-
tific conferences (118) as well as abstract papers and
poster presentations (64) were removed.

Finally, eligibility criteria were applied to the
remaining 350 articles with purpose to extract the
final studies for the analysis. The eligibility crite-
ria described in Sec. 2 limited the number of studies
to 49. The flowchart in Fig. 2 follows the PRISMA
statement where at the chart’s top, the research
query is presented. Then, the various stages of the
systematic literature review are displayed, show-
ing the number of records detected, evaluated and
excluded as well as the reasons why the records were
restricted.
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Fig. 2. Literature review flowchart according to
PRISMA statement (from the last 10 years).

The 49 papers included in the literature review
are grouped into 2 general categories according to
the objective of the study. The first category incor-
porates studies that focus on automatic detection
of AD and the second category includes studies
that estimate the progression of AD, using as ref-
erence the MMSE score, from quantitative features
extracted from EEG recordings. Studies that cover
both research subjects are analyzed separately in
each category.

Further separation of the research studies is based
on the features calculated from the EEG recordings
to detect changes in the EEG status of patients with
AD. There are three sub-categories that describe the
EEG state of each measure. The first category ana-
lyzes EEG measures that characterize brain slowing,
while the second category mainly focuses on mea-
sures that characterize the complexity of brain activ-
ity, while third category describes EEG measures
that characterize brain synchronization Fig. 3.

Fig. 3. Grouping the selected papers according to the
objective of the study into 2 main categories. The first
category contains articles focusing on Alzheimer’s disease
detection while the second category on estimating the
progression of Alzheimer’s disease through the MMSE
score.

3.1. Alzheimer’s disease detection

Research interest is mainly focused on the detection
of Alzheimer’s disease by the extraction of EEG mea-
sures. In recent years, researchers have proposed a
variety of signal processing features and techniques
to study the slowing, complexity and synchroniza-
tion of EEG in patients with AD. In several cases,
modifications to existing measures are recorded with
purpose to improve detection results. The features
are calculated either in electrode pairs or in formed
Regions of Interest (ROIs).

3.1.1. Brain slowing

The prevalence of slow brain waves (δ and θ) instead
of dominant α and β rhythms is the first finding
observed in EEG analysis of patients with AD.33 The
relative band power of the EEG rhythms δ, θ, α, β

and γ as well as the ratio of some EEG rhythms
have been used to distinguish between patients with
AD and healthy subjects. The θ to α ratio appears to
be significantly higher in patients with AD compared
with healthy subjects. In specific tasks, the θ

α ratio
distinguishes the two groups better than the ratios
α and θ separately.37

3.1.1.1. Band power and EEG rhythms ratio

Results of experimental studies focused on EEG
analysis in AD patients have indicated an increase
of the relative band power of low-frequency bands (δ
and θ rhythm) along with a decrease in the power of
high-frequency bands (α, β), suggesting that patients
with AD exhibit a slower brain activity compared to
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healthy people. Tylova et al.38 calculated the relative
band power using Fourier Transform for each EEG
rhythm from 16 AD patients and 16 healthy partic-
ipants.

Using a two-sample t-test and a 3-layer Multi-
Layer Perceptron (MLP) network, the authors veri-
fied that the relative band power is significantly lower
in AD patients and the power of α, β showed bet-
ter classification performance at the occipito-parietal
region. Fahimi et al.37 studied the change in brain
rhythms in 50 AD patients versus 50 healthy sub-
jects. In more detail, they calculated the power of α

and θ rhythms, as well as the ratio of θ to α rhythm
using the Fast Fourier Transform (FFT) from 10min
EEG recordings. Statistical analysis with the t-test
showed that the ratio of θ rhythm to α rhythm was
significantly higher in patients with AD compared to
healthy subjects and that the index of θ

α ration can
be a useful tool for identifying the disease at an early
stage.

In a similar direction, Schmidt et al.39 proposed
a methodology based on the calculation of the α to θ

ratio. This study utilized 40 s EEG recordings from
57 healthy subjects and 50 patients with AD, were
the α

θ ratio of the mean potential of the C3 and O1
channels was calculated. The discrimination of EEG
signals of AD patients from the ones of healthy con-
trols showed 76.4% sensitivity, 84.6% specificity and
an area under the ROC curve of 0.92.

A study focused on the reactivity of θ and α

rhythm in EEG recordings from AD patients was
presented in Ref. 40. Fonseca et al. used EEG record-
ings from 34 AD patients and 30 healthy subjects
from the Neurology Clinic of the Celso Pierro Hos-
pital in Brazil and recorded 46–66 s of EEG activity.
Recordings were performed while participants were
in a relaxed, sitting position with their eyes closed
and their eyes open. After applying FFT in 2.56 s
epochs, absolute band power was calculated for the
frequency bands δ, θ, α and β for all electrodes,
as long as for the left hemisphere, the right hemi-
sphere, the occipital and the frontal region. In this
work, additional features related to the reactivity of
θ and α indices when the person’s resting state is
switched from eyes-closed to eyes-opened state were
studied. Specifically, the change in θ rhythm (θ reac-
tivity index) and the change in α rhythm (α reac-
tivity index) during eye opening were calculated as
well as the ratio of the two variations (α

θ index).

The θ reactivity index was calculated as the ratio
of the absolute θ power when the individuals had
their eyes open during recording, to the correspond-
ing absolute power when the individuals had their
eyes closed. The same procedure was used for the
calculation of the α reactivity index and the α

θ index
was the combination of α and θ indices. When com-
paring α reactivity index between the two groups,
values were found to be higher, which is interpreted
as less activity in patients with AD compared to
healthy subjects. Finally, results from the ROC curve
showed that the classification accuracy regarding the
α
θ index for the left hemisphere reached 95.3%, with
specificity 96.6% and sensitivity 94.1%.

Wang et al.,41 found differences in the γ rhythm
of resting state EEG in patients with AD comparing
to healthy age-matched subjects. EEG signals were
recorded from 8 patients and 12 healthy subjects.
Then, wavelet power spectrum and bicoherence of
EEG were analyzed in the 5 basic rhythms and a non-
parametric permutation method was applied. Com-
pared to the group of healthy subjects, the relative
power of δ and γ frequencies was increased while the
power of α rhythm in AD group was decreased. In
addition, it was found that the increased δ rhythm
was mainly located in the central, parietal and occip-
ital regions. The α rhythm was reduced in the entire
cerebral cortex and the γ rhythm was increased
mainly in the midline frontal, central and occipi-
tal regions. Concerning bicoherence, there was an
increase in the association between the frequencies
of the β − γ rhythms and between low frequencies in
patients with AD in comparison with healthy sub-
jects.

Chen et al.42 studied brain slowing utilizing EEG
recordings of 95 patients with AD from Taiwan’s
Taipei Hospital. The 10 s EEG recordings were ana-
lyzed in 4 EEG rhythms (δ, θ, α and β) using FFT.
The authors calculated the ratio of band powers and
interhemispheric coherence of α rhythm between 8
electrode pairs. Specifically, the θ

α band power ratio,
the θ and δ ratio to the α and β, the θ ratio to
the α and β and the θ and δ to α band power
for 16 electrodes were calculated. EEG recordings
were divided into 4 groups according to the severity
of the disease, ranging from mild to severe accord-
ing to MMSE score. One-way analysis of variance
(ANOVA) and Mann-Whitney test showed that the
best results were given by the ratio δ and θ to the α
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and β band powers and the interhemispheric coher-
ence of the α rhythm at the electrode pairs of the
central and parietal regions.

In study,43 the main objective was the compari-
son between signal processing techniques and partic-
ularly between FFT and Continuous Wavelet Trans-
form (CWT). Durongbhan et al. collected EEG data
from 20 patients with AD and 20 healthy subjects
from Sheffield’s Teaching Hospital. The EEG record-
ings lasted 30min, from which 12 s artifact-free sig-
nals were selected and were split into 4 s epochs.
Then, the average magnitude of FFT was calculated
taking into consideration all coefficients of each EEG
rhythm (δ, θ, α, β, γ), for each of the 23 chan-
nels. The average magnitude of CWT was also cal-
culated. Alzheimer’s Disease detection results were
better when applied CWT than with FFT and their
classification accuracy with the k-Nearest Neighbor
(KNN) algorithm reached 99% for P3 and O1 chan-
nels. Furthermore, researchers observed that features
extracted from δ and θ rhythms had the best clas-
sification results. Finally, Durongbhan et al. studied
window lengths of less than 4 s, concluding that the
4 s window (8000 data points at a sampling frequency
of 2KHz) produced the best results for detecting AD.

3.1.1.2. Amplitude modulation

Another EEG feature characterizing brain slow-
ing is amplitude modulation. Falk et al.,44 intro-
duced amplitude modulation rate-of-change to study
EEG slowing regarding AD. According to the pro-
posed methodology, the EEG recording was analyzed
through its envelope. The amplitude modulation was
calculated using the Hilbert transform for 4 EEG
rhythms (δ, θ, α, β) and the rate at which the ampli-
tude modulations change over short periods of time
(approximately 5 s) was extracted.

Afterwards, the percentage modulation energy
was calculated for electrode pairs from the frontal,
parietal, occipital and temporal region and was com-
pared between 11 healthy subjects (Controls) and
21 patients with different AD severity (11 with mild
AD and 10 with moderate to severe AD). Four
classification problems were conducted namely Con-
trol/AD, Control/mild AD, Control/moderate AD
and mild AD/moderate AD and Support Vector
Machines (SVM) provided Accuracy rate of 90.6%,
74.1%, 71.4% and 53.8%, respectively. Results of the

Table 1. Spectral/Power features utilized in experi-
mental studies of EEG analysis in AD patients.

Category Features Studies

Power Features Relative Band 24, 25, 45, 46
Power 40, 47, 37, 48

Power Spectrum 49, 50, 41, 51
Density 52, 53, 37

Ratio of EEG 54, 39, 40, 42
Rhythms

Energy 24, 25
Signal-to-Noise 55

Ratio
Spectral Features Amplitude 56

Modulation

study44 showed that the majority of the features
selected for classification were derived from modu-
lating the low frequencies δ and θ. This indicates
that the major abnormalities occur in slowly-varying
amplitude modulations. Table 1 presents the spec-
tral/power features used for AD analysis.

3.1.2. EEG complexity

Most EEG analysis studies in patients with AD focus
on the complexity of EEG dynamics. The complex-
ity of brain activity is calculated by some nonlinear
measures from Information Theory such as Multi-
scale Entropy, Fuzzy Entropy, Lempel–Ziv complex-
ity, Approximate Entropy, Tsallis Entropy, Sample
Entropy and Mutual Information to name just a few.
Over the last 10 years, a variety of signal process-
ing techniques and nonlinear features have been pro-
posed expressing complexity, irregularity, variability
and predictability, concluding that the complexity of
brain activity decreases in patients with AD.

3.1.2.1. Entropy features

Recently, Azami et al.57 studied a feature based on
dispersion entropy and fluctuation called multi-scale
Fluctuation-based Dispersion Entropy (MFDE).
EEG recordings from 11 AD patients and 11
healthy subjects were divided into 5 s epochs (1280
data points) and the MFDE,the Multi-scale Sam-
ple Entropy (MSE), the Multi-scale Fuzzy Entropy
(MFE) and the Multi-scale Dispersion Entropy
(MDE) were calculated. Comparison of the mean and
standard deviation between the two groups showed
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that the features from AD patients had lower val-
ues than those of the healthy subjects at short-
time scales, while they were higher on long-time
scales.

The same group of authors, in a previous study58

proposed the multivariate Multi-Scale Entropy,
which is an extension of variation-based Multiple-
Scale Entropy (mvMSEσ2 ). Azami et al. studied the
proposed feature in different frequency bands and
compared it with previous studies based of mean-
based MSE (MSEμ), multivariate MSE (mvMSE)
and variation-based MSE (MSEσ2). The experiments
involved 11 patients with AD and 11 healthy indi-
viduals from Alzheimer’s Patients’ Relatives Asso-
ciation of Valladolid (AFAVA) at the University
Hospital of Valladolid in Spain. Each EEG record-
ing of 5 min was performed with 19 electrodes and
then was segmented into 5 s epochs. Results of the
Mann-Whitney test showed a complexity decrease in
individuals with AD, emphasizing the advantage of
mvMSE and mvMSEσ2 features in separating AD
patients from healthy subjects. In addition, the most
important information derived from the O1, O2, F4,
P3 and T5 electrodes.

Usually, the degree of regularity in a time series
is estimated by the appearance of repeated patterns.
According to Pincus,59 m is a factor for pattern
length and it usually takes values 1 or 2 and r is
a similarity factor that takes values 0.1, 0.15, 0.20,
0.25 and 0.50. Furthermore, in the original study of
MSE, Costa et al.60 proposed a coarse-gaining pro-
cedure to estimate the entropy, based on a integer
time scale factor τ , which takes values over the inter-
val [2,20]. In 2013, Yang et al.61 proposed an EEG
study evaluating the use of MSE across various time
scales in AD analysis. EEG signals of 30 s from 15
patients with moderate to severe AD and 15 healthy
individuals recorded at the Neurological Institute,
Taipei Veterans General Hospital (TVGH) in Tai-
wan were cut into 10 s epochs and analyzed using
Fourier transform in the 5 EEG rhythms. MSE was
calculated for m = 2 and r = 0.15 and for vari-
ous τ scale values in frontal, frontal-central,temporal
and parieto-occipital regions. Results from two-way
ANOVA are in agreement with Ref. 57 and showed
that MSE decreases in AD for short-time scales (τ
from 1 to 6), while it increases for long-time scales
(τ from 16 to 20), making MSE a reliable feature to
discriminate AD patients from healthy subjects.

MSE was also utilized in a recently published
study.62 In this study, 15 healthy subjects, 69
patients with mild AD, and 15 patients with mod-
erate AD participated and the EEG recordings were
performed at the Neurological Institute, TVGH in
Taiwan, while participants were with eyes closed,
opened and during photic stimulation. Then, the
Empirical Mode Decomposition (EMD) was applied
and MSE was extracted from each channel. Clas-
sification results for separating AD patients from
healthy subjects using Linear Discriminant Analysis
(LDA), showed that the best performance in terms
of F1 score (0.828) was obtained for T5 and P3 elec-
trodes.

In study,63 Fuzzy entropy was used to character-
ize the alterations of brain activity in patients with
AD. The calculation of Fuzzy entropy is based on
the original Sample Entropy algorithm proposed by
Richman and Moorman64 and depends on the val-
ues of m, r and n, where n is a factor that shows
the gradient of the fuzzy exponential distance func-
tion. Simons et al. analyzed EEG recordings from 11
patients with AD and 11 healthy individuals from
AFAVA in Spain and extracted Fuzzy entropy and
Sample entropy from 5 s (1280 data points) epochs.
Entropy attributes were calculated for different val-
ues of m, r and n for 16 channels. Lilliefors and
Kruskal–Wallis tests showed that for all values of
m, r and n, fuzzy entropy decreases for individu-
als with AD at almost all electrodes with statistical
significance at T6, P3, P4, O1 and O2 electrodes.
In addition, the best classification results are shown
for n = 1, m = 2 and r = 0.25 for the O2 elec-
trode with 86.36% Precision, 90.91% Sensitivity and
81.82% Specificity.

Wang et al.65 proposed a method to detect dif-
ferences in brain activity of 20 healthy subjects and
14 patients with AD which was applied to clinical
130 s EEG recordings and to surrogate EEG data cre-
ated using the Fourier transform. Results from clini-
cal data based on Student’s t-test showed that Sam-
ple entropy in AD patients was significantly reduced
at C3, F3, O2 and P4 electrodes, which confirmed
that AD can cause loss of brain complexity. How-
ever, concerning synthetic data, it was found that
there was a significant decrease in Sample entropy in
the clinical data over the surrogate data at C3 and
O2 electrodes. Also, significant differences between
healthy subjects and patients with AD was found.
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Another entropy feature, Permutation entropy
was studied in Ref. 66. Tylova et al. obtained
5min EEG recordings from 10 patients with AD
and 10 healthy subjects and examined the asso-
ciation of sampling frequency and window length
with the discrimination between the two groups. The
EEG recordings were segmented in 10 s epochs and
the Permutation entropy was calculated using the
Miller approach, which is an estimate of Permuta-
tion Entropy proposed by Miller.67 Results with two-
sample t-test showed that in the AD case, a decrease
in Permutation entropy was observed compared to
that of healthy subjects for all EEG channels. Fur-
thermore, the best results were obtained for 200Hz
sampling frequency using the 10 s epoch.

A combination of weighted permutation entropy
and multiscale multivariate method is proposed in
Ref. 68. Deng et al. recorded 5 min of EEG activity
from 14 AD patients and 14 healthy subjects and
segmented them in 5 epochs of 8 s duration. Then,
the permutation entropy was extracted based on the
multivariate analysis. Validation was performed on
both synthetic and original data and the one-way
ANOVA test showed an AUC of 0.93. A similar
methodology was proposed in Ref. 69. Morabito et al.
included MCI cases and extracted multiscale multi-
variate permutation entropy from 3 MCI patients,
3 AD patients and 3 healthy controls for each EEG
channel. The discrimination performance of Multi-
Scale analysis was higher between CN/AD patients
than MCI/AD.

Abasolo et al.70 studied the regularity of brain
dynamics through the Approximate entropy, using 11
AD patients from AFAVA and 11 healthy individu-
als. A total of 30 epochs of 5 s each (1280 data points)
were selected on average from the EEG recordings.
Abasolo et al. tested different values of m and r and
they concluded that the best pair was m = 1 and r =
0.25 times the standard deviation. Student’s t-test
showed that Approximate entropy was significantly
lower in AD patients on P3, P4, O1 and O2 chan-
nels. In addition, the classification accuracy of the
two groups with the ROC curve ranged from 72.73%
to 81.82%, achieving better Accuracy (81.82%), Sen-
sitivity (63.64%) and Specificity (100%) when m = 2
and r = 0.25.

A combination of entropy features was proposed
in Ref. 24. Tzimourta et al. utilized 16min EEG
recordings from 14 AD patients and 10 healthy

participants and extracted spectral (Energy, Rela-
tive band power, Approximate entropy, Permutation
entropy, Sample entropy, Tsallis entropy for each
EEG rhythm and Shannon entropy, MSE for 0.5–
60Hz) and statistical features (mean, standard devi-
ation, variance, skewness, kurtosis, IQR) from epochs
of 12 s. Results with Random Forests indicated high
levels of accuracy (ranging from 88.79% to 96.76%)
for 6 classification problems (CN/AD,CN/mild AD,
CN/moderate AD, CN-mild AD/moderate AD, mild
AD/moderate AD, CN/mild AD/moderate AD). In
Table 2 the entropy features are presented.

3.1.2.2. Lempel–Ziv complexity

In 2018, Al-Nuaimi et al.72 examined the complex-
ity of brain dynamics in AD with three complex-
ity features: Lempel–Ziv complexity, Higuchi’s frac-
tal dimension (HFD) and Tsallis entropy in 5 EEG
rhythms in patients with AD and healthy subjects
having similar and nonsimilar age. For the study of
similar-age subjects, they utilized 19 electrodes to
record EEG data with duration from 61 to 240 s using
8 healthy subjects and 3 patients with AD. The SVM
algorithm was used for classification and the results
showed that the Lempel–Ziv complexity presented
better discrimination ability than Tsallis entropy and
HFD. Specifically, for channel C3, the Lempel–Ziv
complexity of θ rhythm yielded 95% Accuracy, 100%
Sensitivity and 92.31% Specificity. For all features
Student’s t-test yielded lower values for patients
with AD than healthy subjects. HFD was also used
in a recent studies based on Temporal-scale-specific

Table 2. Entropy features utilized in experimental
studies of EEG analysis in AD patients.

Category Features Studies

Entropy Shannon Entropy 24, 25, 71
Features

Approximate Entropy 24, 25, 70
Tsallis Entropy 24, 25, 72, 71, 48
Permutation Entropy 24, 25, 66
Multiscale Entropy 62, 24, 25, 73, 71

57, 58, 61
Sample Entropy 24, 25, 63, 65, 74
Spectral Entropy 24, 25, 48
Bispectral Entropy 51
Fuzzy Entropy 63, 57
Dispersion Entropy 57
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fractal dimension.75 Nobukawa et al. performed frac-
tal analysis and power analysis using FFT in 60 s
segments from 16 AD and 18 healthy participants
to extract PSD. Results with ANOVA showed that
reduced fractality was shown for beta and gamma
rhythms of AD group and was associated with cogni-
tive decline. Ahmadlou et al.76 proposed two fractal
dimension algorithms, namely Katz Fractal Dimen-
sion (KFD) and HFD, and showed that the accuracy
for KFD in the beta band was above 99%.

To investigate the complexity of brain activ-
ity in AD, Liu et al.50 examined the Lempel–Ziv
complexity and Power Spectrum Density (PSD) in
14 patients and 14 healthy individuals. A 3-level
Wavelet Decomposition was performed in five 8 s
epochs (8096 points) for each frequency of inter-
est (δ, θ, α, β). Burg’s method was used to cal-
culate PSD. Classification with SVM with features
extracted from α rhythm yielded 91.4% Accuracy,
100% Sensitivity and 82.9% Specificity. One-way
ANOVA showed that PSD of θ rhythm increased
in patients with AD in contrast to healthy sub-
jects, while the α PSD decreased. Furthermore, the
Lempel–Ziv complexity of α rhythm was reduced in
patients with AD, which is consistent with the study
proposed by Al-Nuaimi et al..72

3.1.2.3. Mutual information

Complexity features and features from Information
Theory have been used in a study proposed by
Kim et al.77 with purpose to investigate the infor-
mation transmission between brain regions. EEG
recordings from 10 patients with mild AD and 10
healthy subjects were acquired from the depart-
ment of psychiatry of Taejon St Mary’s hospital.
EEG recordings of 33 s duration were analyzed using
the Fraser–Swinney algorithm, aiming to extract the
time delayed mutual information between two chan-
nels. Omega complexity from EEG data was also
calculated. Then, a modified form of Karhunen–
Loeve decomposition was used, in order to quantify
the information transmission in the brain. Statisti-
cal analysis with Student’s t-test and Bonferroni’s
correction test showed differences in the way infor-
mation was transmitted between the two groups,
indicating a clear discrimination between the two
groups. Furthermore, it was observed that combin-
ing mutual information and Omega complexity was

more effective in information transmission between
parts of the brain than computing only mutual infor-
mation.

In another study,78 Vyšata et al. used mutual
information and wavelet coherence to study the slow-
ing of brain activity and the brain connectivity in
AD. For the proposed study, EEG recordings from
110 patients with moderate AD and 110 healthy indi-
viduals were obtained. Initially, the EEG recordings
were segmented in six epochs lasted between 60–80 s
each and a 5-level Wavelet Transform was applied.
Then, mutual information and wavelet coherence for
171 electrode pairs were extracted. Statistical analy-
sis with two-sample t-test showed that mutual infor-
mation calculated from low frequencies decreased in
patients with AD in the frontal and temporal region,
while increased in the central and parietal regions
for all frequencies. Furthermore, wavelet coherence
also decreased in the frontal and temporal regions
for AD patients, mainly at the right hemisphere and
at low frequencies. In the same database, the same
group of authors proposed a methodology based on
the power law distribution of the EEG power spec-
trum.52 Maintaining the same pre-processing part,
PSDs and the slope α of the power spectra in the
log–log scale were estimated. The two-sample t-test
showed significant differences between groups in the
frontal area and the discrimination of AD from
healthy subjects with area under ROC curve reached
over 90% at the temporal area. Table 3 shows Com-
plexity features and features from Information the-
ory that were used to extract EEG information from
recordings in AD studies.

3.1.2.4. Spectral features

In study,45 a set of spectral features and the SVM
algorithm was used in order to classify EEG data

Table 3. Complexity features and features from Infor-
mation theory utilized in experimental studies of EEG
analysis in AD patients.

Category Features Studies

Complexity Lempel–Ziv Compl. 72, 45, 50
Features

Ω Complexity 77
Information Mutual Information 71, 79, 77, 48, 78

Theory
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from patients with AD from the ones from healthy
subjects. Kulkarni and Bairagi calculated spectral
features, features extracted from Wavelet Analy-
sis and EEG complexity features using EEG data
acquired from 50 healthy individuals and 50 AD
patients. In more detail, EEG recordings were seg-
mented in epochs lasting from 3 to 5 s and the rel-
ative band power, the Lempel–Ziv complexity, the
mean value and the variance of each decomposition
level were calculated using Wavelet Analysis. Addi-
tional spectral features such as Spectral Entropy,
Spectral roll-off, Spectral Centroid and Zero Crossing
Rate were extracted. The spectral entropy, spectral
roll-off, spectral centroid and zero crossing rhythm
features were able to separate the groups with SVM
achieving the best Accuracy (96%).

Wang et al.51 proposed spectrum and bispec-
trum analyses to extract features in order to dis-
criminate 14 healthy subjects and 14 AD patients.
From each EEG recording, a 40 s segment was iso-
lated and divided into 8 s epochs. Then, the PSD was
calculated using Burg’s method and also, the Spec-
tral entropy of α and θ rhythms, the ratio of the
Spectral entropy of α to θ frequency band and the
bispectral entropy. Statistical analysis with one-way
ANOVA showed that PSD in AD group was signifi-
cantly higher for the θ rhythm compared to control
group, while it was lower for the α rhythm in the cen-
tral, parietal and occipital regions. In addition, the
ratio of Spectral entropy of α to θ frequency band in
both spectrum and bispectrum analysis is reduced,
indicating that the electrophysiological activity in
the brain of patients with AD is much slower and less
chaotic. Finally, SVM classification showed a maxi-
mum Accuracy of 90.2%.

In a different study,80 Ieracitano et al. proposed
a CNN architecture to extract EEG features and
discriminate between 63 controls, 63 AD and 63
MCI patients. The network was fed with gray-scale
images that were created from the calculated PSD
and results for the binary problem AD/CN in terms
of accuracy was 92.95%.

In Table 4, all the spectral features described in
this subsection are presented.

3.1.2.5. Statistical characteristics

Kanda et al.55 proposed a methodology based on
statistical features extracted from EEG data by

Table 4. Spectral Features utilized in experimental
studies of EEG analysis in AD patients.

Category Features Studies

Spectral Phase Shift 79
Features

Phase Sync. Index 81, 46
Phase Coherence 46
Coherence 79, 46, 82, 83

84, 48, 78, 85
Partial Coherence 79, 83
Bispectrum 51
Bicoherence 41
Spectral Centroid 45
Spectral Roll-Off 45
Spectral Peak 84, 86, 47
Average Magnitude 43
Median Frequency 51

applying Wavelet Analysis. In this study, 162 EEG
recordings of 40 s duration were used from 74 healthy
subjects and 88 patients with mild to moderate
AD. Wavelet analysis was performed using the Mor-
let wavelet and the EEG rhythms (δ, θ, α and β)
were extracted. Then, 11 statistical features were
calculated, including maximum, minimum, average,
median, standard deviation, variance, interquartile
range, coefficient of variation, variance-to-mean ratio
and the signal-to-noise ratio for each rhythm and
for each of the 20 EEG channels. The SVM clas-
sifier utilized 66% of the dataset for training and
34% for testing which resulted in 92.72% Accuracy.
Lately, autoregressive models have been examined
on various types of data, enhancing the prediction
performance.87 Tylova et al.88 recorded EEG sig-
nals from 139 healthy subjects and 26 patients with
AD and proposed a predictive modelling approach
for detecting AD. In particular, the authors cre-
ated 3 linear autoregressive models: one predictive
model, one symmetric model and one back-predictive
model. Then, from each model they calculated two
sets of features (a) the standard deviation (STD), the
mean of the absolute differences from the mean value
(MAD1) and the mean of the absolute differences
from the median value (MAD2) and (b) the median
of the absolute differences from the median (MAD3),
the interquartile range (IQR) and the first quar-
tile of the absolute mutual differences (MED). The
two-sample t-test showed that the symmetric predic-
tive model along with the second group of features
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Table 5. Statistical Features utilized in experimental studies of EEG analysis in Alzheimer’s
Disease patients.

Category Features Studies

Statistical Features Mean 24, 25, 45
Variance 24, 25, 89, 45, 55, 83
Skewness 24, 25, 89
Kurtosis 24, 25, 89
STD 24, 25, 55, 88
IQR 24, 25, 55, 88
Maximum 55
Minimum 55
Average 55
Median 55
Variance to Mean Ratio 55
Power Law Distribution 52
First Quartile of the Absolute Mutual Differences

(MED)
88

Mean of the Absolute Differences from the Mean
Value (MAD1)

88

Mean of the Absolute Differences from the
Median Value (MAD2)

88

Median of the Absolute Differences from the
Median Value (MAD3)

88

showed statistically significant differences between
the two groups in the frontal lobe.

Another study89 investigated the interactions
between brain regions in three different datasets to
examine the switch from one brain state to the other
with temporal EEG features. Mora-Sánchez et al.
acquired EEG recordings lasting 20 s from 21 AD
patients and 38 healthy controls and extracted statis-
tical moments (skewness, variance, kurtosis) param-
eterized by time. The features were used as an input
to an LDA classifier to discriminate between healthy
and AD participants and the Area Under the Curve
(AUC) of a ROC curve measured the classification
performance. Results showed that large transitions
in brain dynamics are better correlated with AD
diagnosis and the area under the ROC curve was
0.71.

A study proposed by Ferreira90 incorporated 511
subjects, including AD patients (135), MCI patients,
Parkinson’s Disease and other dementia patients and
normal age-matched subjects (141). In this study,
statistical pattern recognition (SPR) was used and
the SPR-based EEG diagnosis of AD was compared
with the diagnosis based on CRF and cognitive anal-
ysis and the diagnosis based on biomarkers obtained
from neuroimaging analysis. Mann-Whitney U test

and one-way Kruskal–Wallis test showed an AUC of
90.50% for the discrimination between AD/CN.

Table 5 shows the statistical features used for
EEG analysis in experimental studies with AD
patients.

3.1.3. Synchronization and functional
connectivity

Synchronization refers to the simultaneous appear-
ance of discrete rhythmic patterns in different regions
of the brain, either unilateral (in one hemisphere)
or bilateral (in both hemispheres). The synchro-
nization of the brain is affected by the degenera-
tion that occurs in dementia. A variety of different
synchronization measures have been reported in lit-
erature,91,92 such as Granger causality, phase syn-
chrony, coherence and many more regarding disrup-
tion on neural synchrony. Most studies in patients
with AD, show a decrease in cerebral synchrony as
a result of cognitive decline compared to healthy
elders.79 EEG recording synchronization measures
are used by a number of studies in order to build
connected brain networks. Using graph theory, nodes
corresponding to EEG channels are constructed and
the connectivity between two nodes (electrode pairs)
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is studied.93 The communication between different
brain nodes that may not be structurally related
is called functional connectivity. FMRI studies sup-
port that significant changes have been observed
in brain networks of patients with AD.94 In EEG
studies, features such as Current Source Density
(CSD), Frequency Peak and Lagged Linear Connec-
tivity (LLC) have been used to characterize com-
munication between two regions in terms of ampli-
tude, phase and different frequencies of the EEG
signal.95

3.1.3.1. Features from LORETA software

The sLORETA/eLORETA software is a tool that
creates three-dimensional (3D) images of the brain
by extracting features from EEG or MEG measure-
ments. The sLORETA method attempts to identify
active cortical sources by analyzing features from
EEG or MEG measurements obtained from the cere-
bral cortex. The results from this method are pre-
sented in a 3D visualization of the brain. Recently, a
number of studies have been proposed to study AD
using the LORETA software.96

Trigianni et al.49 studied the capability of four
EEG features to distinguish patients with AD and
healthy individuals. In this study, 5min EEG record-
ings from 120 patients with AD and 100 healthy
individuals were used which were segmented into 2 s
epochs. The eLORETA software was used to calcu-
late the LLC, the PSD and the CSD for δ (2–4Hz), θ

(4–8Hz), α1 (8–10.5Hz) and α2 (10.5–13Hz) and for
6 ROIs. The highest Accuracy (77%) with Artificial
Neural Network (ANN) classifier was achieved using
(a) the ratio between θ activity of parietal sources
and α1 rhythm, (b) the ratio between θ activity of
frontal sources and α1, (c) the ratio between the
θ activity of occipital sources and α1 and (d) the
ratio between the δ activity of occipital sources and
α1. Good classification results were also obtained in
terms of Sensitivity (79.3%) and Specificity (74.3%).

Similar to Ref. 49, Lizio et al.54 utilized the same
database with Trigianni et al.49 and used a single
EEG metric to study functional connectivity of the
brain. This metric, is the ratio between the activity
of δ rhythm in parietal-occipital region (2–4Hz) and
the activity of low frequencies of α rhythm, namely
α1. The study was performed on 127 patients with
AD and 121 healthy subjects using the LORETA

software. The 5 min EEG recordings were segmented
into 2 s epochs and the individual alpha frequency
(IAF) peak was calculated for the 6–14Hz frequency
band. The classification Accuracy between healthy
subjects and patients with AD according to ROC
curve reached 71.2%. The group of AD patients,
showed a significant decrease in the activity of α1
rhythm in the occipital region, along with an increase
in δ rhythm.

Babiloni et al.53 used the sLORETA software to
check if cortical EEG sources are changing in AD
and whether they are indicators of disease progres-
sion. For this study, 5min of EEG activity with
19 channels from 88 patients with mild AD and
35 healthy subjects were recorded and the record-
ing was repeated one year later. In a later similar
study97 the PSD of the cortical sources was calcu-
lated through eLORETA from EEG recordings from
100 healthy subjects and 120 AD patients. ANOVA
and the Area Under the Receiver Operating Char-
acteristic Curve (AUROC) showed a discrimination
accuracy of above 0.7. In a more recent study,54 data
was segmented into 2 s epochs and the spectral power
density for δ (2–4Hz), θ (4–8Hz), α1 (8–10.5Hz),
α2 (10.5–13Hz), β1 (13–20Hz), β2 (20–30Hz) and
γ (30–40Hz) was calculated. Finally, the IAF peak
was extracted. Results of ANOVA showed that the
δ power increased in patients with AD while the α

power decreases in all areas of interest. Moreover,
one-year follow-up, showed a decrease in β activity in
parietal, occipital and temporal areas in AD patients.
Regarding the localization of cortical sources, it has
been observed that AD patients have increased δ

power in general and reduced the α power in occipi-
tal sources compared to healthy individuals.

3.1.3.2. Coherence

Coherence (also called magnitude squared coher-
ence) has been used in conjunction with mutual
information in order to study brain complexity as
seen in the study of Vyšata et al.78 and cortical con-
nectivity of the brain as seen in the study of Sankari
et al..85 In particular, Sankari et al. used EEG record-
ings from 7 healthy subjects and 20 patients with
AD with purpose to test their methodology. The
methodology is based on the Continuous Wavelet
Transform (CWT) and the calculation of wavelet
coherence for the 5 EEG rhythms in 19 channels.
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Results of one-way ANOVA are in agreement with
the results of study78 and showed that wavelet coher-
ence of δ rhythm decreases in the temporal and cen-
tral regions. Furthermore, the connectivity decreases
in the parietal and central regions mainly for θ and
α frequencies. The same group of authors proposed
a series of different techniques98,99 resulting in the
same conclusion. In their research the coherence in
AD patients decreased, indicating a decline in corti-
cal connectivity.

Trambaiolli et al. proposed two studies examin-
ing the electrode montage sensitivity in AD anal-
ysis86 and the slowing of brain activity and the
functional connectivity between electrode pairs using
spectral peak and coherence.84 In their first study86

12 healthy subjects and 22 probable AD patients
were recruited. The 20min EEG recordings were
obtained and 40 epochs of 8 s were selected for the
analysis. Using the Fourier transform, the spectral
peak from each EEG band was calculated, which is
the point in the PSD where the energy is maximized.
Five electrode montages were examined (Biauricu-
lar reference, Longitudinal Bipolar, Crossed Bipo-
lar, bipolar inter-hemispheric and Cz reference) and
Logistic Regression showed that the bipolar inter-
hemispheric montage outperformed and the clas-
sification accuracy was over 90%. In their second
study,84 19 healthy elderly and 16 patients with
AD were recruited and the pre-processing part was
the same as Ref. 86. In this particular study,84 the
Spectral peak and coherence between electrode pairs
were calculated for frequency bands which corre-
spond to EEG rhythms that are analyzed in more
depth. These rhythms are δ1 (0.1–2Hz), δ2 (2.5–
4Hz), θ1 (4.5–6Hz), θ2 (6.5–7.5Hz), α1 (8–10Hz),
α2 (10.5–12Hz), β1 (12.5–15Hz), β2 (15.5–21Hz),
β3 (>21Hz). This method used 68% of the data for
SVM training and 32% for testing, reaching a 79.9%
classification Accuracy.

In another EEG synchronization study,46 the
main objective was the investigation of artifact
removal algorithms. Cassani et al. tested 3 artifact
removal methods on EEG recordings and specif-
ically the Statistical artifact rejection, the Blind
Source Separation and the Independent Compo-
nent Analysis which was based on Wavelet Anal-
ysis. The proposed study, utilized EEG recordings
acquired from 24 healthy subjects and 35 patients

with AD (20 with mild AD and 15 with mod-
erate AD). Afterwards, spectral power, amplitude
modulation rate-of-change, coherence and phase
coherence/synchrony for each EEG rhythms were
calculated. SVM classification was performed and
accuracy reached 78.9%, 90.8% and 96.3% for Con-
trol/mild AD/moderate AD, Control/mild AD and
mild AD/moderate AD, respectively. Regarding the
calculated features, features extracted from δ, θ and
β rhythms correspond to 80% of the selected fea-
tures for each of the 3 classification problems while
features extracted from γ rhythm were not selected
at all.

In another study,100 investigating the topolog-
ical reorganization of functional brain networks in
AD, 108 AD patients and 15 healthy controls from
the TVGH in Taiwan were recruited as described in
Ref. 61. Chen et al. selected 3 epochs of 9 s duration
for each participant and then filtered the signals into
the 5 EEG rhythms. The phase coherence from EEG
bands was used to construct functional brain net-
works and then the average clustering coefficient and
the global efficiency were extracted to quantify brain
synchronization. Statistical Analysis using ANOVA
revealed significant topology alterations in α rhythm
in patients with AD.

Dubovik et al.82 examined whether modifications
in functional connectivity are related to the cognitive
function of patients with AD. In the proposed study,
5 min EEG signals were recorded from 15 patients
with AD and 15 healthy subjects from University
Hospital of Geneva and imaginary coherence between
brain ROIs was calculated. Coherence Φ is the imag-
inary part of coherence when it is expressed as a
complex number for a given time window. Statisti-
cal analysis with t-test showed a disruption of func-
tional connectivity between the parietal and tem-
poral regions in AD patients compared to the rest
of the brain, mainly for α rhythm. Also, a shift in
functional connectivity from α frequencies to θ fre-
quencies and from Broca region to the right hemi-
sphere was observed in a network involved in episodic
verbal memory. Frequency shift was associated with
good verbal memory performance in patients with
AD which demonstrates an adaptive restructuring
of brain networks in early stages of AD. Therefore,
these findings could be used for automated detection
of AD.
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3.1.3.3. Phase synchronization index

Phase synchronization index is a feature that
has been used in recent studies analyzing the
synchronization and functional connectivity of AD
patients. In Ref. 81 a methodology for identifica-
tion of AD from EEG data, based on a Takagi–
Sugeno–Kang (N-TSK) fuzzy classification model is
described. Recordings were obtained from 30 AD
patients and 30 healthy individuals while subjects
were in a relaxed, sitting position with eyes open
and eyes closed. Yu et al. created networks based
on the phase synchronization index, calculated from
15 8 s epochs, aiming to extract network topology
properties. The calculation of phase synchronization
index creates a value of connectivity strength for
each pair of electrodes which indicates the connec-
tivity between all possible electrodes. The proposed
model utilized 5-fold cross-validation and obtained
97.3% classification Accuracy when recordings were
performed while patients were with their eyes-closed.

In a recent study,101 a research on how neural
networks change in the brain and especially in areas
of high connectivity was conducted. For the proposed
study Engels et al. used 318 patients with differ-
ent stages of AD (mild, moderate, severe) and 133
healthy subjects. Phase synchronization index and a
measure to quantify the importance of an electrode
(node) within the neural network, betweenness cen-
trality, were calculated from 4 s (4096 points) epochs.
Diagrams were created and the center of mass was
calculated, using the values of centrality. Results
from x2-test and one-way ANOVA showed that func-
tional connectivity decreases with increased disease
severity for α rhythm. All regions, except the poste-
rior region, showed that centrality values increased
when the severity of the disease was increased. The
center of the mass was shifted from the posterior
region to the anterior region for high frequencies, as
the severity of the disease increased, indicating a loss
of functional connectivity of the posterior regions of
the brain.

A different use of MSE was proposed in Ref. 73.
Song et al. created a functional brain network by
calculating MSE. According to this methodology,
MSE is calculated from 16-channel EEG recording
obtained by 15 healthy and 15 AD patients and rep-
resents the dynamic of each channel (node). It is then
displayed on a hyperplane with purpose to calculate

the distance between the nodes and determine the
network connectivity.

The SVM algorithm achieved 96.24% classifica-
tion accuracy for the detection of AD patients from
healthy subjects. Regarding connectivity, the Mann-
Whitney test showed that AD patients had reduced
connectivity for whole brain, especially for connec-
tions between remote channels compared to healthy
subjects. In addition, reduced connections between
the frontal region and other regions, revealed that
signal transmission related to frontal lobe is dam-
aged in patients with AD. All the Loreta features
are presented in summary in Table 6.

3.2. Disease severity estimation
through MMSE score
by quantitative EEG features

Numerous studies have studied quantitative EEG
features in patients with AD; however, little infor-
mation is available on the correlation of quantita-
tive EEG with disease progression, using as reference
the MMSE score. In the same context of AD detec-
tion, researchers proposed quantitative EEG mea-
sures that characterize slowing, complexity and syn-
chronization of brain activity, aiming to investigate
predictor variables that show high correlation with
MMSE score variation.

3.2.1. Correlation of EEG slowing features
with MMSE score

The relationship between EEG measures and the
progression of cognitive decline has undoubtedly

Table 6. Features from LORETA software utilized in
experimental studies of EEG analysis in AD patients.

Category Features Studies

LORETA Phase Locking Factor 47, 101
Features

Degree Node 47
Mean Degree of Network 47
Small Worldness of a Network 47
Closeness Centrality of a Node 47
Absolute Average Deviation 47
Betweenness Centrality 101
Center of Mass 101
Lagged Linear Connectivity 49, 102
Current Source Density 49, 102
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gained the research interest. Slowing of background
activity and the dominance of low frequencies δ and
θ is a fact in AD. A number of researchers have stud-
ied the relative power of EEG rhythms in AD and
the ratio of power of EEG rhythms, particularly of α

and θ. Results of these studies show a high positive
correlation between the power of δ and θ rhythms
with the severity of the disease. Studies have shown
that the α

θ ratio is also positively correlated with the
MMSE variation, meaning that it decreases as the
disease severity increases.

3.2.1.1. Relative band power

In a large study48 of 118 patients with mild to
severe AD acquired from the prospective longitudi-
nal studies of the Austrian Alzheimer Society (PRO-
DEM) database, it was investigated which quan-
titative EEG measure or combination of measures
was best correlated with the severity of AD, as esti-
mated by the MMSE score. Garn et al.48 studied
various complexity, slowing and synchronization fea-
tures in EEG recordings of people sitting with their
eyes closed (158 s) and during a cognitive test (86 s).
The EEG recordings were segmented into 4 s epochs
with 2 s overlap. Then, the relative power of the 5
EEG rhythms, the coherence, the Canonical corre-
lation, the Granger causality, the Shannon entropy,
the Tsallis entropy and the Mutual Information
were extracted. Researchers used Quadratic Least-
Squares Regression and observed that the increased
relative power of θ rhythm is correlated with cogni-
tive decline. The best regression results were the rel-
ative power of θ rhythm in the left temporal region
(R2 = 0.28), the mutual information on the left
hemisphere (R2 = 0.31) and the model created by
the total of the features extracted while the patients
performed the cognitive test.

In another EEG slowing study,56 Fraga et al. used
EEG recordings lasting approximately 5min from 27
healthy subjects and 49 patients with AD (27 with
mild AD and 22 with moderate AD). The ampli-
tude modulation for the 5 EEG rhythms (δ, θ, α, β

and γ) is calculated using Hilbert transformation
and the energy is extracted using amplitude mod-
ulation between frequency bands. One-way ANOVA
showed statistically significant differences in ampli-
tude modulation between the 3 groups. In addition,
δ modulation decreased dramatically at β rhythm

and appeared at θ rhythm when the disease severity
was increased, making the methodology an impor-
tant tool for correlating EEG activity with disease
progression.

3.2.1.2. Ratio of EEG-rhythm power

Fonseca et al.40 that described in Sec. 3.1.1 stud-
ied α and θ EEG rhythms in patients with AD and
healthy subjects aiming to calculate the power of
EEG rhythms while participants opened their eyes.
Thus they calculated the absolute power of δ, θ, α, β

from EEG recordings while participants were with
their eyes-closed and eyes-opened. Then they uti-
lized these metrics to calculate the θ reactivity index
(absolute θ power of eyes-opened divided by the
absolute θ power of eyes-closed), α reactivity index
and the α index to the θ index (α

θ index). Results
from Logistic Regression showed that the α

θ index
from left hemisphere was the highest correlated with
the MMSE feature, compared to the other calculated
features.

3.2.2. Correlation of EEG complexity
features with MMSE score

Taking into consideration the experimental studies
that mainly explore Information Theory features, we
can conclude that complexity features are moder-
ately to highly correlated with MMSE score varia-
tion. In addition, there is a decline in their value as
the disease progresses. The decrease is particularly
noticed at the Central region and at the cortical areas
of the Left hemisphere.25

3.2.2.1. Sample entropy

Tsai et al.74 studied Sample Entropy in 27 patients
with AD from the neurological clinic at National
Yang Ming University Hospital in order to find the
correlation between quantitative EEG and MMSE
score. A 30 s epoch of each EEG recording was
selected for analysis and Sample Entropy (m = 2, r =
0.15) was calculated using EMD. Stepwise regres-
sion results showed a moderate correlation (0.361 −
0.523, p < 0.05) between MMSE score and Sam-
ple Entropy in Fp1, Fp2, F4 and T3 channels. In
addition, Spearman’s correlation coefficient showed
a high correlation (0.975) between MMSE variation
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and the variation of Sample Entropy at F7 in 5
patients who received a follow-up examination 6
months later.

In another complexity study,25 entropy features
showed promising results. Tzimourta et al. exam-
ined the ability of some statistical and spectral
features proposed in their previous work24 to pre-
dict MMSE score variation. EEG recordings were
extracted from 14 AD patients and 10 healthy con-
trols and segmented into epochs of 10 s. Results of
Multiple Regression Analysis indicated high correla-
tion of MMSE with Sample Entropy of θ rhythm,
Relative θ power and Permutation Entropy of δ

rhythm and the best R2 was obtained for O2 (0.542)
and F4 (0.513) electrodes.

3.2.2.2. Mutual information

Coronel et al.71 studied features from Information
Theory with purpose to describe alterations in brain
complexity of people with AD and their correlation
with MMSE score. Specifically, they recorded 168 s of
EEG activity on average from 79 probable patients
with AD, utilizing the PRODEM database. From
the EEG recordings, epochs of 4 s with 2 s overlap
were chosen and the Mutual Information,the Shan-
non entropy, the Tsallis entropy, the MSE and the
Spectral entropy were calculated. In the multiple
regression models, the Multiple Correlation Coeffi-
cient R2 showed high values for Mutual Informa-
tion in C3 (0.46), Cz (0.43) and F3 (0.43) channels,
as well as in the Central region (0.43) and the left
hemisphere (0.42). Also, MSE showed high R2 val-
ues at channel C3 (R2 > 0.4). The regression mod-
els with main predictors the Shannon entropy and
the Tsallis entropy showed R2 > 0.3. Finally, results
showed a decrease in complexity features as MMSE
decreased and consequently as the disease’s severity
increased.

3.2.3. Correlation of EEG synchronization
and functional connectivity features
with the MMSE score

Experimental studies that examine the relationship
between quantitative EEG features with AD pro-
gression using as reference the MMSE score, indi-
cate that connectivity and synchronization features
are positively correlated with MMSE score variation.

In particular, connectivity features exported with
LORETA software as well as synchronization mea-
sures, such as Granger causality, coherence and
phase shift which are calculated mainly from the
δ rhythm, are reduced as MMSE score decreases
mainly at Anterior, Central, Left temporal and Pos-
terior regions.

3.2.3.1. LORETA features

LORETA has been used to calculate synchroniza-
tion and functional connectivity features of cortical
signals. Recently, Tait et al.47 recorded EEG signals
from 47 participants (21 patients with AD and 26
healthy subjects) while subjects were in a relaxed,
sitting position with their eyes open. Fourier trans-
form was applied in 20 s epochs in order to cal-
culate the relative power of the 5 EEG rhythms,
the peak frequency from each frequency band and
the phase locking factor, calculated between elec-
trode pairs from 40 ROIs. Regarding each rhythm’s
functional network structure, graph theory measures
were calculated: the degree of node, the mean degree
of the network, the small-worldness of a network and
the closeness centrality of a node. Results from the
Mann-Whitney test showed that the changes found
in the power spectrum between brain regions were
not indicative of the level of cognitive decline in
patients with AD. However, the small-worldness of
the networks was positively correlated with MMSE.
In addition, the small-worldness of networks and
the closeness centrality of each node appeared to
decrease in the temporal lobe of patients, while the
mean degree of the network increased in patients
with AD. These findings confirm the synaptic con-
nectivity loss in patients with AD, particularly
located in temporal lobe.

Hata et al.102 used EEG data from 28 patients
with AD and 30 healthy subjects in order to cor-
relate EEG functional connectivity features with
MMSE score variation. The CSD and Lagged Phase
Synchronization (LPS) extracted with eLORETA
from EEG recordings was segmented into 2 s epochs.
Results from the statistical analysis, showed reduced
LPS at δ and θ rhythm in patients with AD com-
pared to healthy individuals for most of the ROIs. In
addition, δ rhythm connectivity was positively corre-
lated with MMSE, whereas patients with AD did not
show statistically significant difference in Current
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source density in any of the frequency bands in com-
parison with healthy controls.

3.2.3.2. Synchronization features

Waser et al.79 used 79 patients from the PRODEM
database in order to correlate EEG synchronization
features with AD severity. During EEG recording,
the subjects were in a relaxed, sitting position with
their eyes closed and their eyes open while a cognitive
test (active phase) was taking place. The recordings
were segmented into 4 s epochs with a 2 s overlap,
from which coherence, partial coherence, phase shift
and dynamic canonical correlation were calculated
for δ, θ, α and low frequency β (13–15Hz). In addi-
tion, Granger causality, conditional Granger causal-
ity, canonical correlation and cross-mutual informa-
tion were calculated in time domain. Synchroniza-
tion features were analyzed among electrode clusters,
namely Anterior (FP1, FP2, F3, F4), Left Tempo-
ral (F7, T7, P7), Central (FZ, C3, CZ, C4, PZ),
Right Temporal (F8, T8, P8) and Posterior (P3,
P4, O1, O2). Quadratic Least Squares Regression
results confirmed that synchrony is reduced in EEG
recordings from AD patients with correlation coef-
ficient R2 = 0.353 for the Anterior and Left Tem-
poral regions when recordings performed while par-
ticipants had their eyes were closed. In addition,
coherence, partial coherence, Granger causality and
phase-shift of δ rhythm showed the strongest corre-
lation with MMSE score and were positively corre-
lated with MMSE mainly in the Central-Left Tem-
poral (R2 = 0.332) and Posterior-Left Temporal
regions (R2 = 0.271). Also, Waser et al. observed
that the correlation with MMSE was even higher
for the active phase, reaching R2 values equal to
0.462.

Similarly,83 the same group of authors studied
EEG from the PRODEM database, using 83 AD
patients having their eyes closed. In this study, Waser
et al. calculated fewer features (i.e. coherences, par-
tial coherences, bivariate and conditional Granger
causality, dynamic canonic correlations, variance)
following the same methodology as Ref. 79. They
observed that Granger causality decreases as MMSE
score decreases, which is interpreted as increased
disease severity. Furthermore, correlation coefficient
R2 reached a maximum value equal to 0.392 for all
features.

4. Discussion and Conclusions

4.1. Summary of literature review
findings

In this systematic review, 39 experimental stud-
ies aiming to detect AD from EEG features and
10 experimental studies with purpose to associate
MMSE score with quantitative EEG are presented.

Even though different methodological approaches
are proposed, the literature review results in
a common methodological approach adopted in
most of the papers: signal pre-processing, time-
frequency/nonlinear analysis, feature extraction and
classification/regression as seen in Fig. 4.

In many cases, artifact-free epochs are visually
selected from EEG recordings lasting a few minutes
or even a few seconds. During the pre-processing
stage, bandwidth is limited and high frequencies
are removed from the EEG recordings. These high
frequencies represent subjects’ muscular movements
during the recording and they are of no scientific
interest, as EEG changes occur in the [0.5–60]Hz
band. This procedure is done by applying bandpass
filters. At the same time, specific frequencies that
cause artifacts on the signal (i.e. 0 Hz and 50Hz)
are removed with bandstop filters. Then, in most

Fig. 4. Methodological stages of experimental studies
focused on AD analysis.
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methodologies, the recordings are segmented into
specific-length epochs either after a short study of
epoch length or arbitrarily.

In the signal processing phase, different method-
ologies are applied on EEG recordings in order to
reveal the frequencies of the 5 EEG rhythms. The
most commonly Time-Frequency methods used are
Fourier transform and Wavelet Analysis. However,
in many studies simple filtering is applied. Further-
more, in some studies49,53,54,84 the frequencies are
analyzed in more depth, dividing each rhythm into
2 or even 3 sub-bands. For example, α rhythm that
is shown in 8–13Hz, is divided into 2 frequencies, α1
at 8–10,5Hz and α2 at 10, 5–13Hz. Then, EEG fea-
tures are calculated in order to analyze the complex-
ity and/or slowing and/or synchronization of brain
dynamics.

Another stage is the formation of ROIs. AD
is a progressive disease that is initially trig-
gered in specific brain structures (i.e. hippocam-
pus); thus, an EEG analysis in regions seems
mandatory in order to study how different sites
affect brain dynamics.103 In the experimental stud-
ies24,25,40–42,47–49,51–54,58,61,63,65,70–73,78,79,82,83,85,101,102

the ROIs are created from either electrode pairs or
from groups of electrodes. Frequently, recordings are
performed on an EEG recording device of 16 or 19
scalp electrodes. ROIs are most often 4 or 5 and
include electrodes covering

• the Anterior or Frontal area (FP1, FP2, F3, F4),
• the Posterior or Occipito-Parietal area (P3, P4,

O1, O2)
• the Central area (FZ, C3, CZ, C4, PZ),
• the Temporal area of the left hemisphere (F7, T7,

P7),
• the Temporal area of the right hemisphere (F8,

T8, P8).

At the final stage, some AD detection studies
apply statistical analysis tests in order to exam-
ine whether there are changes in brain dynam-
ics in patients with AD compared to healthy sub-
jects. These changes in some EEG measures may be
an indication to identify AD patients from healthy
individuals. Statistical analysis is usually performed
with Student’s t-test, nonparametric Mann-Whitney
test, or ANOVA. The rest of the studies, which
may or may not apply statistical analysis tests, uti-
lize machine learning algorithms and especially the

SVM classifier.44–46,50,51,55,72,73,84 According to the
algorithm, instances that need to be classified are
mapped to a high-dimensional feature space, wherein
they are separated by a very clear gap, named hyper-
plane. The vectors of the margin are called support
vectors and the objective of the algorithm is to find
an optimal hyperplane that maximizes the distance
between the margin and the support vectors, while
minimizes the classification error.104 SVM is a good
classifier for a binary classification problem and com-
pared to other algorithms (e.g. Random Forests),
SVM is trying to find the distance between the sup-
port vectors and the margin instead of the probabil-
ity of an instance to belong to class. The rest of the
studies utilize LDA,62,89 KNN,43 Random Forests,24

ANN49 and fuzzy classifier.81

The statistical techniques and the machine learn-
ing algorithms that are used in the literature are
depicted in Fig. 5.

The selected data along with the training and
testing of the classifier are crucial for the perfor-
mance of the model. Data obtained from a small
number of participants in combination with a chaotic

Fig. 5. Methodological stages of experimental studies
focused on AD analysis.
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feature vector may limit the discrimination ability of
the classifier, leading to a high risk of overfitting. In
that case, the classifier would be trained very well on
a part of the dataset, showing very good performance
on the training data but at the same time extremely
poor prediction ability on new data, deteriorating
the ability to generalize.

Cross-validation is a widely-used learning method
successfully addressing the risk of overfitting. How-
ever, different validation methods have been applied
on EEG-based AD datasets, mainly cross-validation
and leave-one-subject-out, with different the train-
ing and testing datasets in each methodology; thus,
the comparison of the findings between studies is not
straightforward.

Results from the systematic literature review
show that in the majority of the studies the method-
ological approach is focused on EEG feature extrac-
tion and less on signal processing or on the appli-
cation of more complex machine learning algo-
rithms.105 Research interest is mainly focused on
discovering the complexity and the synchronization
of the brain activity by finding appropriate EEG
biomarkers and the most relevant areas in the brain,
so to adjust the therapeutic intervention; thus, more
complex machine learning techniques have not been
used extensively as much in EEG research in AD as
in imaging. Deep learning architectures and Convo-
lutional Neural Networks have not yet been applied
on a large AD database using EEG data106; how-
ever, deep learning methodologies have been pre-
sented on MRI scans107–109 and EEG recordings from
MCI patients.80

The classification problem that is most commonly
studied is the discrimination between AD patients
and healthy elderly, which are referred as “control”
group (CN/AD). Most methods focus on separating
AD group from the control group, without examining
the stage of the disease (mild, moderate or severe) in
which AD patients are. Only few methods test more
classification problems, such as

• CN/mild AD,24,44,46

• CN/moderate AD,24,44

• CN-mild AD/moderate AD,24

• mild AD/moderate AD,24,44,46

• CN/mild AD/ moderate AD.24,46

Concerning the classification problem, MMSE
score range does not match in many studies that deal

with the discrimination of AD patients from healthy
controls. Some studies may refer to AD patients
including subjects at mild and moderate stage, while
other studies may include only mild or moderate
AD patients, without reporting the stage of the dis-
ease.49–51,53,62,66,78,81 This fact causes confusion in
the comparison of the results especially when the
classification problem deals with stages of AD (e.g.
CN/mild AD or CN/moderate AD). Furthermore,
in many studies the MMSE score range was not even
reported.37,41,43,45,65,72,85,88,89

On the other hand, in the final step of regression
analysis, the relationship between EEG features and
MMSE score and in particular, how EEG character-
istics change with MMSE variation is examined. In
some studies,56,74 the behavior of only one feature is
analyzed regarding the MMSE score variation. How-
ever, in most Regression studies25,40,48,71,79,83,102 the
behavior of many EEG features is analyzed. These
features take the role of predictor and are able to
form regression models. Regression models are cre-
ated with either Logistic regression analysis39,40,86 or
Multiple Regression Analysis25,71 or Quadratic Least
Squares Regression79,83 and are evaluated with the
correlation coefficient R2. The coefficient R2 ranges
from 0 to 1, with higher values indicating greater
correlation of EEG characteristics with the variation
of MMSE score. Tables 7 and 8 present in brief the
studies that have been proposed the last 10 years
that focus on detecting AD from quantitative EEG
feature (Table 7) and on correlating MMSE score
with quantitative EEG features (Table 8).

It can be observed that the small number of par-
ticipants in many studies as long as the heterogene-
ity in MMSE score range constrain the compari-
son between experimental studies. Studies that have
recruited a small number of participants63,70,72 have
the risk of overfitting, limiting the classifier’s perfor-
mance and thus, ruining the machine learning model.
These studies lack generalizability of the outcome
compared to the ones that have recruited a larger
sample size.49,52,54

Multicenter research studies evaluated on large
publicly available databases have not yet been pro-
posed. Therefore, the effectiveness of algorithms can-
not be verified and the superiority of one algorithm
over another lies solely in the data in which it is
trained. Thus, evaluation of the proposed machine-
learning methodologies on different EEG datasets is
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Table 8. A comparison of performance of experimental studies proposed in the literature regarding disease severity
estimation through MMSE score by quantitative EEG features. MSE: Multiscale Entropy, STD: Standard Deviation,
IQR: Interquartile Range, EMD: Empirical Mode Decomposition.

EEG Duration
Authors AD/CN (MMSE) (seconds) Methodology Results

Tzimourta et al.25 14 (14–22)/10 (30) 780 12 s epochs, moments, STD,
IQR, Energy, Relative
Band Power, Shannon
Entropy, Approximate
entropy, Tsallis entropy,
Permutation entropy,
MSE, Sample Entropy,
Multiple Regression
Analysis

R2 = 0.202 − 0.542, higher
at O2 and F4 R2=0.365
(posterior)

Coronel et al.71 79 (15–26)/ 0 ≈ 168 4 s epochs with 2 s overlap,
Auto Mutual Information
(AMI), Shannon Entropy,
Tsallis Entropy, MSE,
Spectral Entropy

R2 = 0.46 for C3,
R2 = 0.43 for Cz, F3
and central region and
R2 = 0.42 for left
hemisphere and AMI,
SpecEn and MSE
decreases while MMSE
decreases

Waser et al.79 79 (15–26)/ 0 162 4 s epochs (1024) with 2 s
overlap, Coherence, Partial
Coherence, Phase Shift,
Grager Causality,
Conditional Granger
Causality, Canonical
Correlation, Dynamic
Canonical Correlation,
Cross-Mutual Information

R2 = 0.462, Granger
Causality is reduced as
MMSE increases in
Frontal and Left
Temporal Region, the
Inter-Mutual
Information of b
reduces for the Rear
and Right Temporal
Region.

Waser et al.83 83 (15–26)/ 0 180 4 s (1024) epochs with 2 s
overlap, Cohesion, Partial
Cohesion, Granger
Causality, Dynamic
Normalized Correlation,
Variance

R2=0.392, Granger
Causality decreases as
MMSE decreases

Tsai et al.74 27 (19.3 ± 0.7)/ 0 30 EMD, Sample Entropy R2 = 0.361 − 0.523 for
Fp1, Fp2, F4 and T3.

highly recommended to further demonstrate the gen-
erality of the methods.

Another characteristic that should be taken into
consideration when comparing between studies is the
age of the participants. Participants should differen-
tiate statistically significant in age, since dementia is
a disease shown with aging. Thus, comparing with
young population does not show any clinical interest
in identifying AD from EEG recordings. In this sys-
tematic review, only studies applied on age-matched
subjects are reported. One exception is the study

proposed by Al-nuaimi et al.72 wherein participants
having similar and nonsimilar age were recruited. In
this case, the reported results are the ones from the
age-matched subjects.

Research evidence shows that the last two
decades more than 200 unsuccessful clinical trials
have been conducted for pharmacological therapeu-
tic strategies.110 On the other hand, a wide range
of nonpharmacological AD treatments may eliminate
the disease symptoms. Positive impact on the disease
symptoms is reported after motor rehabilitation111
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and cognitive training through Virtual Reality sys-
tems,112,113 nutritional support, Snoezelen therapy,
to name just few.114 Neurofeedback intervention
strategies, previously applied on some ADHD and
epilepsy cases indicating great results,115 show the
potential to be applied as an alternative therapeu-
tic approach to AD. Recently, Luijmes et al.116 pro-
posed an EEG-based neurofeedback treatment on 10
AD patients and managed to stabilize cognitive func-
tions and even improve memory skills. Computer-
aided Diagnosis in constantly gaining ground117 and
ongoing clinical trial118 examine the possibility Brain
Computer Interface along with neurofeedback inter-
vention programs be able to reverse brain slowing,
eliminate AD symptoms and increase memory and
attention performance. NonInvansive Brain Stimula-
tion (NIBS) techniques, such as Transcranial mag-
netic stimulation (TMS) and transcranial direct cur-
rent stimulation (tDCS) have presented prominent
effects in alleviating cognitive symptoms and enhanc-
ing cognitive performance in dementia patients.119

Recent studies report improvement of patient’s
behavior and emotions after applying High frequency
repetitive TMS120,121 or tDCS122–124 in certain ROIs
for both AD and MCI patients. All things considered,
it is imperative to find reliable quantitative EEG
biomarkers evaluated on large publicly-available AD
datasets to assist clinical practice.

4.2. Comparative study

A wide variety of comprehensive review papers have
been presented in the literature, exploring AD mark-
ers and recent advances in the field.125–131 Table 9
summarizes the main parts of these recent review
papers dealing with EEG-related diagnosis of AD.

The authors of some of these papers have fol-
lowed a PRISMA-based methodology to system-
atically search and collect EEG-based studies for
dementia types discrimination,125 AD diagnosis, pro-
gression and differential diagnosis126 and AD diagno-
sis based solely on complexity methods,127 whereas
others128–131 did not apply a research methodology.

Cassani et al. limited their research between Jan-
uary 2010–February 2018, Sun et al. expanded the
limit to 2000–2019 and Nardone et al. applied two
different date ranges, specifically 1966–Feb 2018 for
PubMed search and 1980–Feb 2018 for EMBASE
search. Smailovic et al.128 did not follow a research

methodology to systematically search, collect and
analyze studies that correlate qEEG with biolog-
ical AD markers and those that distinguish AD
from other dementia types. Same with study,128 in
Ref. 129 a search protocol is not presented. Hor-
vath et al.129 incorporated sleep-based EEG, ERP
and mismatch-negativity studies to present a review
for AD diagnosis based on EEG and ERP find-
ings. In a recent review of 2020 Jafari et al.130

includes resting-state EEG and brain stimulations
studies for both human and nonhuman subjects deal-
ing with AD. Another recent review of 2020,131

focuses on AD diagnosis and provides an overview
of AD markers, including EEG (ERP and working
memory-related EEG features), genetic, neuropsy-
chologic, neuroimaging and fluid markers. The reader
is encouraged to refer to these review papers to
expand their knowledge in AD analysis.

The proposed review paper summarizes exclu-
sively experimental studies that have acquired EEG
recordings from patients with AD and analyzed them
compared to the ones obtained from healthy con-
trols. MCI is an early stage of cognitive decline not
severe enough to be characterized as dementia. MCI
patients are at increased risk of developing dementia
and may or may not evolve into AD.132

According to NIA-AA criteria MCI,10 is deemed
a distinct cognitive stage characterized by cogni-
tive impairment, not always presented as amnes-
tic, disguising MCI into amnestic (aMCI) and non-
amnestic (naMCI) MCI.133 aMCI often progresses
to the first stage on AD and aMCI biomarkers
indicate a high possibility of people with aMCI to
develop AD in the next 5 years.134 Therefore, phar-
maceutical interventions is currently one of the most
important and prominent research fields for treat-
ment of MCI due to AD.134 Many studies have
been conducted on MCI patients utilizing either MRI
data135,136 or EEG recordings137–139 or even MEG
recordings140,141 in order to investigate MCI and
to predict the onset of AD. EEG-based method-
ologies extract either entropy features68,69,142 or
spectral features,80,97,100,106,128,143–145 or eLORETA
features146,147 in order to find differences among
healthy controls, AD patients and MCI patients. On
the other hand, naMCI affects parts of the brain
that are associated to attention, language, execu-
tive functions, visuospatial skills, rather than mem-
ory and naMCI patients are often more probable to
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Table 9. A comparison of recent review papers exploring AD markers and recent advances in the field. These review
papers are also able to deal with EEG-related diagnosis of AD.

Authors Year Search methodology Years of coverage Inclusion criteria

Horvath et al.129 2018 Not reported Not reported sleep-based EEG, ERP,
Mismatch-negativity studies,
MCI studies

Nardone et al.125 2018 PRISMA PubMed (1966–Feb
2018), EMBASE
(1980–Feb 2018)

Frontotemporal dementia,
Frontotemporal lobar
degeneration, AD, Dementia
with Lewy bodies, Lewy body
dementia, Parkinson’s disease
dementia,
Electroencephalography,
Spectral analysis and
Connectivity

Cassani et al.126 2018 PRISMA Jan 2010–Feb 2018 (1) EEG* (2) Electroencephalogr*
(3) Alzheimer* (4) Diagnos*

Smailovic and Jelic128 2019 Not reported Not reported EEG-based and biological AD
markers studies, MCI studies

Rossini et al.131 2020 Not reported Not reported EEG, genetic, neuroimaging,
neuropsychological,
Cerebrospinal fluid (CSF) based
studies

Sun et al.127 2020 PRISMA 2000–2019 Complexity analysis OR Nonlinear
dynamical analysis OR
Lempel–Ziv complexity OR
fractal dimension OR Hurst
exponent OR entropy OR
correlation dimension) AND
(AD OR Mild Cognitive
Impairment OR Subjective
Cognitive Impairment

Jafari et al.130 2020 Not reported Not reported EEG and MCI studies
This study 2020 PRISMA Jan 2010–Mar 2020 EEG, Alzheimer’s, NOT MCI,

AND NOT mouse, AND NOT
mice

develop other dementia types such as Lewy Body
Dementia.133,148,149

Since MCI is a vague and sometimes but not
always a pre-dementia stage of AD, research stud-
ies dealing with MCI patients aiming to predict AD
must state the subtype of MCI patients they incor-
porate. This aspect is usually not clarified in the
experimental studies and unfortunately, only a few
studies report the MCI type when dealing with AD
diagnosis150–152

To maintain the focus only to AD, research
studies incorporating patients with MCI were not
included in this review. This narrow focus solely on

AD studies is a significant advantage of the proposed
review paper that it has not been addressed previ-
ously to none of the above reviews. Including stud-
ies in the research protocol that deal with naMCI
patients is a significant drawback of the method-
ology, that can result to misleading research find-
ings. Our review has followed PRISMA method-
ology to systematically search, review and collect
only experimental EEG studies. Furthermore, in
the proposed review only resting-state EEG stud-
ies are incorporated, as well as in Refs. 130 and 126.
Also, in contrast with previously published review
papers127,128,130,131 our systematic review focuses
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on machine learning algorithms and discuss late
advances.
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78. O. Vyšata, M. Valǐs, A. Procházka, R. Rusina and
L. Pazdera, Linear and nonlinear EEG synchroniza-
tion in Alzheimer’s disease, Neurophysiology 47(1)
(2015) 46–52.

79. M. Waser, H. Garn, R. Schmidt, T. Benke, P. Dal-
Bianco, G. Ransmayr, H. Schmidt, S. Seiler,
G. Sanin, F. Mayer et al., Quantifying synchrony
patterns in the EEG of Alzheimer’s patients with
linear and non-linear connectivity markers, J. Neu-
ral Transm. 123(3) (2016) 297–316.

80. C. Ieracitano, N. Mammone, A. Bramanti, A. Hus-
sain and F. C. Morabito, A convolutional neu-
ral network approach for classification of dementia
stages based on 2D-spectral representation of EEG
recordings, Neurocomputing 323 (2019) 96–107.

81. H. Yu, X. Lei, Z. Song, C. Liu and J. Wang, Super-
vised network-based fuzzy learning of EEG signals
for Alzheimer’s disease identification, IEEE Trans.
Fuzzy Syst. 28 (2019) 60–71.

82. S. Dubovik, A. Bouzerda-Wahlen, L. Nahum,
G. Gold, A. Schnider and A. G. Guggisberg,
Adaptive reorganization of cortical networks in
Alzheimer’s disease, Clin. Neurophysiol. 124(1)
(2013) 35–43.

83. M. Waser, M. Deistler, H. Garn, T. Benke,
P. Dal-Bianco, G. Ransmayr, D. Grossegger and
R. Schmidt, EEG in the diagnostics of Alzheimer’s
disease, Statist. Papers 54(4) (2013) 1095–1107.

84. L. R. Trambaiolli, A. C. Lorena, F. J. Fraga, P. A.
Kanda, R. Anghinah and R. Nitrini, Improving
Alzheimer’s disease diagnosis with machine learn-
ing techniques, Clin. EEG Neurosci. 42(3) (2011)
160–165.

85. Z. Sankari, H. Adeli and A. Adeli, Wavelet coher-
ence model for diagnosis of Alzheimer disease, Clin.
EEG Neurosci. 43(4) (2012) 268–278.

86. L. Trambaiolli, A. Lorena, F. Fraga, P. Kanda,
R. Nitrini and R. Anghinah, Does EEG montage
influence Alzheimer’s disease electroclinic diagno-
sis? Int. J. Alzheimer’s Dis. 2011 (2011) 761891.

87. Y. Ouyang and H. Yin, Multi-step time series fore-
casting with an ensemble of varied length mixture
models, Int. J. Neural Syst. 28(4) (2018) 1750053.

88. L. Tylova, J. Kukal and O. Vysata, Predictive
models in diagnosis of Alzheimer’s disease from
EEG, Acta Polytech. J. Adv. Eng. 53(2) (2013)
94–97.

89. A. Mora-Sánchez, G. Dreyfus and F.-B. Vialatte,
Scale-free behaviour and metastable brain-state
switching driven by human cognition, an empirical
approach, Cogn. Neurodyn. 13(5) (2019) 437–452.

90. D. Ferreira, V. Jelic, L. Cavallin, A.-R. Oek-
sengaard, J. Snaedal, P. Høgh, B. B. Andersen,
M. Naik, K. Engedal, E. Westman et al., Electroen-
cephalography is a good complement to currently
established dementia biomarkers, Dement. Geriatr.
Cogn. Disord. 42(1–2) (2016) 80–92.

2130002-30



2nd Reading

February 12, 2021 15:11 2130002

Machine Learning Algorithms and Statistical Approaches for Alzheimer’s Disease Analysis

91. C. Babiloni, R. Lizio, N. Marzano, P. Capotosto,
A. Soricelli, A. I. Triggiani, S. Cordone, L. Gesu-
aldo and C. Del Percio, Brain neural synchroniza-
tion and functional coupling in Alzheimer’s disease
as revealed by resting state EEG rhythms, Int. J.
Psychophysiol. 103 (2016) 88–102.

92. F. Vecchio, F. Miraglia, F. Alù, M. Menna,
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