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A B S T R A C T   

The magnocellular pathway deficit theory has long been considered to be a possible cause for dyslexia, providing 
an alternative method to explain auditory and visual processing deficits. Several studies have attempted to 
classify these deficits with the application of machine learning in anatomical brain imaging, rendering the 
classification techniques using EEG graph measures both robust and reliable. In this paper, a classification of 
university students with and without dyslexia is attempted with the use of a Brain Computer Interface (BCI) 
Device and an Interactive Linguistic Software Tool in order to validate the application of such a device in 
classifying dyslexia in a higher education population. EEG signals acquired from a wearable, sensory EEG 
recording device from 12 university students with dyslexia along with 14 typically developed, age matched 
individuals are recorded, while participants were examined in three different experimental conditions: a) 
auditory discrimination, b) visual recognition c) visual recognition with background music. Spectral features 
extracted from each EEG rhythm (δ, θ, α, β, γ) are used to train a Random Forests classifier, aiming to identify 
quantitative EEG features that characterize dyslexia in different brain regions. Results show high levels of ac-
curacy, sensitivity and specificity (above 95%) in the entire brain, followed by the left and right hemisphere, 
with the highest discrimination performance reported during the third experimental condition with the presence 
of background music. Different experimental conditions provide high classification accuracy that results in 
correct discrimination between higher education students with and without dyslexia.   

1. Introduction 

Dyslexia is one of the most frequent specific developmental learning 
disorders and is estimated to affect 5–15% of the student population 
[1,2] although estimates vary widely depending on cut-off criteria on 
reading assessment scales, and a great diversity of theoretical outlooks 
on dyslexia [3]. Dyslexia is described as a particular deficit in reading 
acquisition that cannot be reported for by low IQ, poor educational 
opportunities, or an obvious sensory or neurological damage [3]. It has 

often been related to severe deficits in reading and spelling skills which 
are not attributed to intellectual disabilities, inadequate schooling and 
socio-cultural conditions, and neurological, visual, or auditory impair-
ment [4,5]. It often co-occurs with phonological deficits [6] that persist 
in adult life [7,8], and include one or several aspects of phonological 
processing, like mentally manipulating speech sounds (phonological 
awareness), storing phonological material for a few seconds (verbal 
short-term memory), and rapidly retrieving long-term phonological 
representations [9]. 
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Within the past decades, a variety of theories have emerged to 
explain the origins of dyslexia, including the phonological and the ce-
rebral deficit hypotheses. According to the first which has been deemed 
as the most influential theory, reading and writing difficulties are caused 
by language disabilities within the phonological sector [10-14] where 
people with dyslexia are unable to efficiently decode written letters 
(graphemes) into their corresponding sounds (phonemes). Conversely, 
the cerebral deficit hypothesis [15,16] suggests that impairments are 
caused by impaired articulatory skill acquisition, which in turn results 
from an ontogenetic cerebellar dysfunction. From a behavioral 
perspective, the difficulties of people with dyslexia in time estimation, 
motor skill and working memory, and in balance tasks might be 
explained by the cerebral deficit hypothesis [17]. In addition, a number 
of recent studies have found that other factors such as underlying pri-
mary auditory processing deficit [18,19], impaired visual processing 
[20,21], attentional deficits [22,23], impaired eye movements [24], and 
abnormalities of processing [25] have been widely correlated to dyslexia 
as the main or contributing causal factors. 

Moreover, Livingstone and Galaburda [26] after their research 
concluded that the magnocellulars of the Central Nervous System of 
people with dyslexia were smaller in size and disorganised compared to 
their typical counterparts, indicating that a general sensory magnocel-
lular abnormality might lead to difficulties in processing sensory infor-
mation, thus resulting in disruption of normal language learning and 
processing [27]. The magnocellular theory is a theory that unifies both 
the hypothesis of cerebellar deficit and the hypotheses of visual or 
auditory deficits. Magnocellular processing deficits have long been re-
ported [28,29] to be a possible cause for dyslexia and providing an 
alternative method to explain sequencing and visual processing deficits. 
Overall, this hypothesis refers to the abnormalities in magnocellular 
sensory pathways which impair the processing of fast incoming visual or 
auditory stimuli [30,31], as they carry information about motion, 
overall shape, and small light–dark changes. Although this theoretical 
approach has not been without its critics [32,33], it has attracted major 
support from a large body of research [27,34,35]. Evidently, it can be 
inferred that when a number of deficits combine together it may result in 
reading difficulties, thus, supporting the view that dyslexia is a multi-
factorial disorder [36]. Consequently, the search for a “unique dyslexia 
deficit” is likely inadequate when it comes to explaining this complex 
neurodevelopmental disorder [37-39]. 

Another line of research has focused on elucidating the neurobio-
logical differences between the hemispheres and assessing commonal-
ities between the various subtypes of children and adults with dyslexia 
[40]. Specifically, it has been suggested that the development of inter-
hemispheric functional asymmetry may be deregulated in people with 
dyslexia [41]. Consequently, the transfer of motor and sensory infor-
mation between the two hemispheres is degraded due to changes in the 
corpus callosum of dyslexic brain. These research efforts show that 
subtle developmental changes or asymmetries in the network of many 
brain structures may be at the bases of sensory and cognitive problems in 
dyslexia [42,43]. 

Although the vast majority of studies regarding dyslexia has been 
carried out in children population and stressed its continuity into 
adolescence and adulthood [44,45], a large literature gap (research in 
adult subjects represents almost 6% of all research in dyslexia) con-
cerning the persistence of reading difficulties during these periods, does 
still exist [46]. Even fewer are the studies where neuroimaging tech-
niques, and more specifically EEG signals, have been connected to adult 
research suggesting that neurocognitive deficits, including connectivity 
abnormalities, persist in dyslexia during adulthood [47]. In a study of 28 
adults with dyslexia and 36 typically reading adults, Gonzalez et al. [48] 
assessed functional connectivity strength with the phase lag index (PLI) 
in order to investigate the EEG functional networks at rest for each 
frequency band (δ, θ, α, β) reporting significant group differences in the 
α band (8–13 Hz). 

Mahe et al. [49,50] have conducted experiments using evoked 

potentials resulting in impaired N170 print tuning in adults with 
dyslexia during word recognition, longer latencies, more errors for 
pseudowords, and a lack of hemispheric specialization. Similarly, Shany 
and Breznitz [51] reported lower N170 activation in the visual associ-
ation cortex in Hebrew speakers with dyslexia. In addition, there has 
been a number of studies which resulted in decreased P3b amplitudes 
whether this involved atypical perception [52] or reading pseudoho-
mophones [53]. However, Fosker and Thierry [54] implementing a 
phonological discrimination task found a deficit in N1 modulation 
without reporting any significant differences in P2, N2, P3a, and P3b in 
individuals with dyslexia. In the same line of research, there have been 
findings concerning decreased amplitude and latency in mismatch 
negativity in the left hemisphere during phoneme [55], syllable [56], 
and tone discrimination [57]. 

2. Related work 

Many neuroimaging techniques have been proposed in order to 
enable researchers to comprehend how decoding and sight recognition 
function both in people with or without dyslexia [58]. These distinctive 
brain behaviors have been portrayed through functional Magnetic 
Resonance Imaging (fMRI) [59,60], Magnetoencephalography (MEG) 
[61], Diffusion Tensor Imaging (DTI) [62,63], Voxel-Based Morphom-
etry (VBM) [64,65] and Positron Emission Tomography (PET) [66] to 
name but a few techniques and studies. 

As most of the previous techniques may limit the research on people 
with dyslexia due to radioactive application and body movement limi-
tation [67], Electroencephalography (EEG) technique, which is consid-
ered to be a non-invasive measure of brain function, has been widely 
used to assess brain behaviors offering additional insights into cortical 
lateralization models [68,69]. The most studied component of ERPs is 
the P300 waveform [70], as it reflects higher-order cognitive processes 
such as stimulus evaluation and categorization [71]. 

A study carried out by Arns et al. [72] using EEG signals in a resting 
state, revealed unique brain activation patterns in children with dyslexia 
showing increased slow θ and δ activity in the frontal and right temporal 
areas of the brain and an increased β activity at F7. Similarly, Goswami 
[19] proposed that a specific difficulty with atypical cortical oscillations 
in the θ (4–7 Hz) or in the δ (1–4 Hz) frequency band may lead to 
impaired auditory rhythmic entrainment, thereby leading to processing 
deficits at the syllable level, whereas Giraud and Poeppel [73] reported 
that although individuals with dyslexia might not show the typical left- 
hemisphere specialization for the γ rate, the θ and low and high γ activity 
appeared strongly left dominant. On the other hand, there were studies 
which investigated the δ/θ range in participants with dyslexia without 
finding any differences either when using EEG-ASSR at 4 Hz [74], or 
when exploring MEG-ASSRs at 2, 4, 10 and 20 Hz [75]. 

Several methods have been proposed in order to measure EEG signals 
in several populations through Brain Computer Interface (BCI). A typical 
BCI system consists of a signal acquisition device and a signal processing 
device. A BCI system is generally divided in two phases. In the first phase 
(offline), the system is calibrated and a training algorithm with prere-
corded data occurs. In the first phase, features are calculated from the 
prerecorded data and the optimal ones are used to train the classifier. 
During the second phase (online), the system recognizes in real-time 
brain activity patterns for a given task usually acquired by a wired or 
a portable sensory device. The recognition is performed with the pro-
vided knowledge from the offline training phase. For the offline training 
phase, several methods for automated dyslexia detection have been 
evaluated in dataset from different research studies. One such device is 
the lightweight Emotiv EPOC + wireless EEG system which has received 
the most empirical attention in a spectrum of different fields [76-79]. 
Badcock and colleagues [76,77] demonstrated that the Emotiv system 
could be used to acquire discernible ERP waves that are comparable to 
those from research-quality EEG systems. 

Concerning the exploration of the relationship between several forms 
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of learning difficulties and EEG abnormalities there have been just a 
handful of research using the Emotiv EPOC, mainly a Turkish research 
team under the supervision of Prof. Eroglou [80]. In a series of experi-
ments, when he compared the Multiscale entropy analysis of a group 
with dyslexia (N = 16) to that of a typically developing group (N = 20) 
and having administered neurofeedback sessions with the Auto Train 
Brain, he found that the group with dyslexia showed significantly lower 
complexity at the lowest temporal scale and at the medium temporal 
scales than did the typically developing group. 

Researchers have deployed a number of Machine Learning Classifiers 
to detect brain patterns specific to dyslexia. Andreadis et al. [81] used 
approximate entropy of EEG signals by implementing a Support Vector 
Machine (SVM) offering promising results with a sensitivity of 89.47% 
and specificity of 57.89%. Similarly, Frid and Breznitz [82] developed 
an effective algorithm to analyze and classify the subjects as either 
regular or readers with dyslexia, by using EEG recorded channels with 
ERP methodology during an auditory, short non-linguistic, sub-phonetic 
choices reaction time task, resulting in sensitivity of 68.6% and speci-
ficity of 78.2%. In a recent research, Rezvani et al. [83] also employed 
an SVM to assure the performance suitability of the classifier, resulting 
in 95% accuracy of classification of children based on local network 
features from different frequency bands, thus rendering the classifica-
tion techniques applied to EEG graph measures both robust and reliable 
in distinguishing between typical and readers with dyslexia. In a review 
of EEG-based pattern classification frameworks for dyslexia, Perrera 
et al. [69] have identified the advantages and disadvantages of an EEG 
approach, in addition to recommending optimization methods for a 
better prediction of dyslexia. It is, thus, evident that several studies 
provide support for the use of machine learning in anatomical brain 
imaging when it comes to classifying population with or without 
dyslexia [84,85]. 

A broadly utilized classifier in separating individuals with dyslexia 
from normal readers is Random Forest, which consists of an ensemble of 
randomized decision trees [86]. Researchers analyzing eye-movement 
data achieved a high general accuracy of 89.8% [87,88] and albeit a 
lower one (75.9%) when it came to detecting subjects with dyslexia 
[88]. Plonski et. al. [89] investigated grey matter disruptions in children 
with dyslexia and achieved above chance accuracy (65%) after princi-
pled feature selection and assessment of classification algorithm accu-
racy. Other recent studies reached 100% in accuracy, sensitivity, 
specificity and precision for dyslexia subjects and also overall category 
in classifying normal and dyslexia subjects [90]. Iwabuchi et al. [91] 
analyzed the data by Decision tree and Random Forest, showing that 
machine learning regression technique had better prediction than the 
ordinary rule-based decision. The validity of this specific classifier was 
also evident in Rauschenberger’s et al. [92] prototype study with 313 
children (116 with dyslexia), which predicted the risk of having dyslexia 
before acquiring reading skills with an accuracy of 0.74 for German and 
0.69 for Spanish. The prototype was designed to observe participants 
listening to music (via a web app), with different acoustic parameters 
such as frequency and duration, which relate with perceptual parame-
ters such as pitch and loudness. 

Although the perception of musical elements in relation to dyslexic 
reading has not been extensively studied yet, its findings are often 
contradictory and conflicting [93,94]. A number of studies indicate that 
there are more benefits to listening to classical music while executing a 
cognitive task, a phenomenon known as the Mozart effect [95] than 
other types of music [96]. 

In this paper a classification of university students with and without 
dyslexia is attempted. EEG recordings from university students with 
dyslexia are analyzed along with the EEG data from typically developed, 
age matched individuals. The use of a BCI Device is employed to validate 
the application of such a device in detecting (classifying) dyslexia in a 
higher education population. The features from the time domains are 
extracted, forming the feature vector to train several classifiers for nine 
different brain Regions of Interest (RoI). The levels of accuracy were 

calculated for the experimental conditions of audio recognition and vi-
sual discrimination of words based on the magnocellular deficit hy-
pothesis following similar studies investigating the relationship of 
magnocellular dysfunctions with audiovisual deficits of people with 
dyslexia [97,98]. In order to further investigate the inhibitory or rein-
forcing role of classical music while executing a cognitive task, a third 
experimental condition of visual discrimination of words with the 
accompaniment of background music was added. To the best of our 
knowledge, this is the first comprehensive study with university students 
with dyslexia examining a variety of features over various experimental 
conditions and showing such a high classification accuracy. 

The manuscript is divided into five parts. Following the Introduction, 
section two (Methodology) describes the database and the interactive 
linguistic application along with the data acquisition and EEG extraction 
features. The third section presents the obtained results regarding the 
classification model, and the fourth section discusses the main findings 
of the study along with the limitations of it. The last section underscores 
the importance of this classification method in comparison to related 
studies. 

3. Materials and methods 

The proposed methodology consists of two stages. First, the EEG 
signals are recorded with a wearable EEG device from 26 participants, 
then spectral features are calculated from each recording forming the 
feature vector to train a Random Forests classifier. An illustration of the 
proposed system is presented in Fig. 1. 

3.1. Participant description 

In this study, 26 right-handed university students studying in the 
University of Ioannina, Greece, participated in this experiment as part of 
a greater research investigating the contribution of magnocellular the-
ory to the interpretation of the causal factors in dyslexia [99]. Perfor-
mance was evaluated with a novel interactive application measuring 
audiovisual recognition and discrimination of words in three experi-
mental conditions. The participants formed two groups with regard to 
whether they present learning difficulties or not. Twelve students (6 
females and 6 males) were diagnosed with dyslexia, whereas 14 subjects 
formed the control group (10 females and 4 males). All the 12 subjects 
with dyslexia had undergone intervention at young age and no dyslexia- 
related comorbidities have been reported. Participants among the 
groups had approximately the same age and the average age for the 
group with dyslexia was 21.58 y/o and for the control group 20.93 y/o. 
The education level for each participant was recorded and it was the 
same, since all participants were university students. Written consent 
forms to participate in this study were obtained for all the participating 
subjects. 

3.2. Interactive Linguistic Software Tool description 

The application monitors the participants’ responses on three 
experimental conditions, namely (a) audio recognition, (b) visual 
discrimination, and (c) visual discrimination with the accompaniment of 
background music. The material presented in the three conditions fol-
lowed several predefined phonological and morphological criteria based 
on commonly made mistakes in Greek language by individuals with 
dyslexia, especially focusing on confusion of letters with visual (κ, γ, χ) 
or acoustic similarity (f, v, θ, ð) [100]. Specifically, in every condition 
the participants had to choose the correct word among a group of three 
words (1 real Greek word and 2 pseudowords). The average time for 
each response was 8.5 s. 

In the first experimental condition the participants were asked to 
differentiate verbally presented, similar acoustic stimuli (e.g. fo΄vame, 
fo΄δame, fo΄θame). They would see 3 boxes on the screen with respective 
numbers and had to choose the number which corresponded to the 
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correct word. In the second experimental condition, the subjects were 
told that they would see different words on the screen and were 
instructed to read them as carefully as possible and choose the one that 
seemed right to them. Again, the non-words contained mistakes con-
cerning the position and the order of the letters, like sequential (fridge – 
frigde), insertion (computer – compluter), omission (bicycle – bicyle), or 
letter substitution errors (dog – tog). Finally, the third experimental 
condition was similar to the second one, with the difference being the 
simultaneous presence of musical accompaniment. The musical excerpt 
selected for the experiment was the Sonata for Two Pianos in D major, K. 
448, a work composed by Mozart. 

3.3. Data acquisition 

The EEG recordings were performed in a sound- and light-attenuated 
room and were obtained for each subject while the evaluation test was 
ongoing. Before the procedure, an experienced researcher informed the 
participants about the experimental protocol. For each participant a 4–7 
min training was needed in order to understand the protocol and became 
familiar with the device. During the evaluation and the EEG recording, 
participants were in an upright seated position, calm, in a resting state 
with their eyes open. The duration of each EEG recording ranged be-
tween 21 and 38 min (28 min on average), depending on the time 
needed for each subject to complete the test. The recording was termi-
nated as soon as a participant felt any discomfort with the device or the 
procedure. In total, 5 h and 51 min of EEG recordings from subjects with 
dyslexia and 5 h and 47 min from subjects without dyslexia were 
collected, forming a database of approximately 11.5 h. 

For the recordings, the Emotiv EPOC + was used, a commercial 
wearable EEG device. The Emotiv EPOC + is one of the most widely used 
sensory EEG devices for lifestyle purposes, consisting of 14 sensors with 
corresponding felt pads placed in the scalp according to the Interna-
tional 10–20 System (AF3, F3, F7, FC5, T7, P7, O1, AF4, F4, F8, FC6, T8, 
P8 and O2). Two additional rubber electrodes were placed in the mas-
toids, serving as reference channels. The sampling frequency is 128 Hz 
and the connection between the electrodes and the scalp is established 
using saline liquid solution, applied on all felt pads of each sensor. The 

device was set up according to the instructions provided by the Emo-
tivPRO Software and the quality of the connectivity was regularly 
checked both in the beginning and during the recording. 

3.4. EEG signals preprocessing 

The recordings were performed with the montage according to the 
linked mastoids. After each recording, the EEG signals are exported in “. 
edf” format and processed using MATLAB platform and the EEGLAB 
toolbox. A Butterworth notch filter is applied to remove the 50 Hz power 
line noise oscillations from the EEG signals and a high-pass FIR digital 
filter at 0.5 Hz to remove low frequency oscillations. Then, five equi-
ripple FIR filters are designed to allow frequencies within a certain range 
and attenuate frequencies outside that range. The five band-pass filters 
(0.5 – 4 Hz, 4 – 8 Hz, 8 – 12 Hz, 13 – 30 Hz, and 30–60 Hz) are designed 
with regard to the 5 EEG rhythms, attempting to extract spectral features 
in each frequency sub-band of interest. Then, each filtered EEG 
recording is segmented in non-overlapping epochs of 10 sec and spectral 
features are extracted from the 10-s EEG segments. Table 1 presents the 
sub-bands of interest with the corresponding EEG rhythms. 

3.5. Feature extraction 

In the literature, a variety of statistical and spectral features have 
been extracted for EEG analysis of brain diseases [101,102] and cogni-
tive states [103,104]. In this study we evaluated the ability of simple 
spectral features, namely Energy and Shannon entropy in detecting the 

Fig. 1. An illustration of the proposed system.  

Table 1 
Sub-bands of interest along with the corresponding EEG 
rhythm.  

Sub-band of Interest EEG rhythm 

0.5–4 δ 
4–8 θ 
8–12 α 
13–30 β 
30–60 γ  
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subtle changes in brain activations that differentiate individuals with 
dyslexia than those without dyslexia. Shannon Entropy measures the 
complexity of EEG. 

More specifically, the FFT transformation is used to transform the 
signals from time domain to frequency domain as follows:. 

Xj =
∑N− 1

n=0
xnexp

(

− j
2π
N

ni
)

(1)  

where xn is the signal and Energy is defined as: 

Energy =
∑N

j=1
Xj

2, i = δ, θ, α1, α2, β1, β2, γ (2) 

Which is the square value of a frequency spectrum point Xj calculated 
for each band i. 

Shannon Entropy (ShanEn) = −
∑M

j=1pjlog(pj) (2). 
wherein pj is the probability distribution of each signal x and is 

calculated estimating the histogram for each recording. Shannon En-
tropy is calculated for the entire spectrum. 

3.6. Classification 

The vector of spectral features was used as input to train and test a 
Random Forests classifier. Random Forests is an ensemble classifier, 
consisting of a number of decorrelated decision trees [86]. The algo-
rithm of the Random Forest is presented with detail in Fig. 2. The pre-
diction is performed according to the bagging method, wherein each 
decision tree is responsible for its own prediction, and in the end, all the 
decision trees vote for the most popular class [104]. Other classification 
algorithms, such as Support Vector Machines, Decision Trees, Naïve 
Bayes, k-Nearest Neighbors and Neural Networks were also tested. 

The evaluation of the proposed methodology is performed on the 
binary classification problem “control/dyslexia”, which correspond to 
the EEG signals obtained from 14 individuals without dyslexia (controls 
– CON) and 12 subjects with dyslexia (DYS). To identify unique patterns 
of dyslexia among different brain regions, several brain RoI are created. 
Specifically, the EEG information of the electrodes is grouped in pairs 
and clusters of electrodes, according to the electrode sites. However, due 
to loss of connectivity located mainly on the F8 electrode, not all EEG 
channels from the 26 subjects were used in the formation of RoI. Spe-
cifically, the F8 electrode was isolated and rejected and so was the 
corresponding channel, F7 to maintain the symmetry of the recording. 
Thus, the following RoI were formed (Fig. 3):  

• Entire brain (AF3, F3, FC5, T7, P7, O1, AF4, F4, FC6, T8, P8 and O2)  
• Left hemisphere (AF3, F3, FC5, T7, P7, O1)  
• Right hemisphere (AF4, F4, FC6, T8, P8, O2)  
• Left frontal (AF3, F3)  
• Left temporal (T7, FC5)  
• Left occipital (O1, P7)  
• Right frontal (AF4, F4)  
• Right temporal (T8, FC6)  
• Right occipital (O2, P8) 

4. Results 

The performance of multiple classifiers was tested and Random 
Forest classifier proved to be the best in terms of accuracy. Fig. 4 rep-
resents the comparison between the accuracies of each classifier in all 
three conditions. 

The classifier’s performance is evaluated with Accuracy (ACC), 
Sensitivity (SENS) and Specificity (SPEC). The Accuracy of the 

Fig. 2. Random Forest Pseudo code.  
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classification shows the ability of the classifier to differentiate DYS cases 
from CON. The Sensitivity shows the percentage of DYS subjects 
correctly classified as having dyslexia and Specificity shows the per-
centage of cases correctly classified without dyslexia of all the subjects 
characterized as controls. 

All the tested classification algorithms performed comparable, but 
the Random Forests were found to be the most effective. Thus, in a 
sample of 26 students (12 with dyslexia and 14 without), a classification 
performance of only Random Forests was calculated for each RoI for the 
whole duration of the experiment for each experimental condition. 

For each RoI in the first experimental condition, where an audio 

recognition of words was involved (Table 2), the classification of sub-
jects was checked. The best classification level of accuracy of 96.24% 
(SENS = 96.34 %, SPEC = 96.10 %) was found in the entire brain. The 
left hemisphere indicated the second highest value of accuracy of 
93.02% (SENS = 93.37 %, SPEC = 92.58 %), followed by the right 
hemisphere (ACC = 92.00 %, SENS = 90.40 %, SPEC = 94.74 %). In 
addition, there were six RoI where the levels of accuracy ranged within 
the 8th decile with the lowest level of accuracy being reported in the left 
occipital lobe (ACC = 81.07 %, SENS = 81.02 %, SPEC = 81.14 %). More 
specifically, the left frontal lobe had an accuracy level of 86.98% (SENS 
= 89.12 %, SPEC = 84.49 %), followed by the right occipital lobe (ACC 
= 85.25 %, SENS = 82.89 %, SPEC = 88.84 %), the right frontal lobe 
(ACC = 84.48 %, SENS = 84.85 %, SPEC = 83.38 %), the right temporal 
lobe (ACC = 83.22 %, SENS = 81.44 %, SPEC = 85.87 %), and lastly the 
left temporal lobe (ACC = 82.98 %, SENS = 81.36 %, SPEC = 85.19 %). 
Fig. 6 represents the ROC curves of the classification performances of 
each brain region at condition (1). 

The classification of subjects for each RoI was checked regarding the 
second experimental condition where the participant had to visually 
discriminate groups of words with phonologically similar features. The 
results of the classification were quite similar to the way the subjects 
were classified in the first experimental condition (see Table 3). The best 
classification level of accuracy of 95.12% (SENS = 97.34 %, SPEC =Fig. 3. Regions of Interest according to the electrode sites. (Blue: Left frontal, 

Orange: Left temporal, Red: Left occipital, Green: Right frontal, Purple: Right 
temporal, Yellow: Right occipital, Grey: Rejected channels). 

Fig. 4. Accuracy scores of every classifier at Entire Brain RoI in all three conditions.  

Table 2 
Classification performance of Random Forests concerning each RoI (ACC: Ac-
curacy, SENS: Sensitivity, SPEC: Specificity) for the first Condition.  

RoI ACC (%) SENS (%) SPEC (%) 

Entire brain 96.24 (1.66) 96.34 (1.67) 96.1 (2) 
Left hemisphere 93.02 (2.7) 93.37 (2.71) 92.58 (2.82) 
Right hemisphere 92.00 (2.7) 90.40 (2.73) 94.74 (3.44) 
Left frontal 86.98 (3.14) 89.12 (3.14) 84.49 (3.25) 
Left temporal 82.98 (3.35) 81.36 (3.36) 85.19 (3) 
Left occipital 81.07 (3.6) 81.02 (3.63) 81.14 (3.71) 
Right frontal 84.48 (3.27) 84.85 (3.28) 83.87 (3.78) 
Right temporal 83.22 (3.79) 81.44 (3.79) 85.87 (4.09) 
Right occipital 85.25 (3.58) 82.89 (3.59) 88.84 (3.89)  
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93.08 %) was found in the entire brain, whereas the lowest level of 
accuracy was reported in the left occipital lobe (ACC = 79.46%, SENS =
81.00%, SPEC = 78.24%). The left hemisphere indicated the second 
highest value of accuracy of 93.22% (SENS = 97.04%, SPEC = 89.94%). 
In addition, there were six RoI where the levels of accuracy ranged 
within the 8th decile. More specifically, the right hemisphere reported 
an accuracy level of 87.25% (SENS = 86.51%, SPEC = 88.02%), fol-
lowed by the left frontal lobe which had an accuracy level of 86.36% 
(SENS = 87.81, SPEC = 85.00%), the right occipital lobe (ACC =
83.58%, SENS = 82.19%, SPEC = 85.05%), the right frontal lobe (ACC 
= 83.10%, SENS = 81.36%, SPEC = 85.07%), the right temporal lobe 
(ACC = 81.86%, SENS = 82.82%, SPEC = 80.99%), and lastly the left 
temporal lobe (ACC = 81.34%, SENS = 80.58%, SPEC = 82.05%). Fig. 7 
represents the ROC curves of the classification performances of each 
brain region at condition (2). 

The Random Forests vector machine was employed to classify the 
subjects for each RoI to one of two categories of students with dyslexia 
and the ones without dyslexia who served as the control group in the 
experiment. The third experimental condition required from the par-
ticipants to visually discriminate groups of words with the accompani-
ment of background music. The results of the classification did not differ 
greatly from the previous classifications of the whole sample and the two 
experimental conditions (see Table 4). Once again, the best and highest 
classification level of accuracy in all the calculated classifications was 
found in the entire brain (ACC = 98.01 %, SENS = 98.73 %, SPEC =
97.39 %). The left hemisphere indicated the second highest value of 
accuracy of 95.37% (SENS = 97.41 %, SPEC = 93.39 %), followed by the 
right hemisphere (ACC = 91.00 %, SENS = 90.75 %, SPEC = 91.23 %). 
In addition, all the rest RoI ranged within the 8th decile, with the right 
frontal lobe reporting the lowest level of accuracy (ACC = 82.83 %, 
SENS = 82.49 %, SPEC = 83.12 %). Unlike the previous classifications, 
the left occipital lobe reported the fourth highest level of accuracy of 
88.19% (SENS = 90.38 %, SPEC = 86.07 %). Moreover, the right oc-
cipital lobe reported an accuracy level of 87.41% (SENS = 87.90 %, 
SPEC = 86.88 %), followed by the left frontal lobe which had an accu-
racy level of 86.02% (SENS = 89.77 %, SPEC = 82.68 %), the right 
temporal lobe (ACC = 85.02 %, SENS = 87.17 %, SPEC = 82.91 %), and 
finally, the left temporal lobe (ACC = 84.35 %, SENS = 85.27 %, SPEC =
83.40 %). Fig. 8 represents the ROC curves of the classification perfor-
mances of each brain region at condition 3. Tables 2-4 represent the 
ACC, SENS and SPEC score along with their Standard Deviations for each 
experimental condition for each RoI. Fig. 5 represent the comparison 
between the accuracies of each condition at every RoI. Fig. 9 is summing 
up the results of this experiment, representing the ACC, SENS, SPEC 
scores for each RoI in every condition. 

5. Discussion 

Discrimination between dyslexia and non-dyslexia, with the use of 
machine learning techniques in the analysis of EEG signals, has been 
previously described (Table 5) in studies using different methodology in 
the acquisition of recordings during resting state [83,105], and/or 

during writing [105], or under an auditory stimulus [81,82]. Despite 
their significant influence on the field of brain activation in dyslexia, our 
study’s contribution is two-fold compared to these efforts: firstly, we 
targeted university students with dyslexia which is a rarely examined 
group [82], and secondly, the employment of EEG signals in different 
phonological tasks presenting auditory, and visual stimuli with or 
without the presence of background music has never been examined 
before. In the proposed study, EEG recordings are acquired during 
listening and reading, two skills that can capture learning deficits. Re-
sults show that the proposed model provides a clear discrimination be-
tween individuals with and without dyslexia solely from quantitative 
EEG features. Of course, comparison of our method with other classifi-
cation approaches presented in the literature cannot be straightforward, 
since the database, the means and the experimental protocol differ. 
However, it is of great scientific interest to present and discuss other 
proposed approaches in the field of EEG-based dyslexia analysis and 
shed light on the brain activity of students with learning disorders as it 
expressed by the EEG. 

The classification of unique dyslexic patterns was achieved through 
EEG signals obtained from 12 individuals with dyslexia and 14 subjects 
without dyslexia during a non-resting state condition. Spectral features 
were extracted from pairs and clusters of electrodes and formed the 
feature vector that trained a Random Forests classifier to discriminate 
between “dyslexia” and “control” cases providing high performance in 
terms of Accuracy, Sensitivity, and Specificity, regarding different brain 
RoI. It is also significant to highlight that the Random Forests classifier 
reported high levels of accuracy (above 95%) with signals produced by a 
BCI device and not by a clinical grade EEG device. 

The proposed EEG-based methodology showed significant results in 
the detection of the group of subjects with dyslexia. The best classifi-
cation performance concerning the Accuracy, Sensitivity and Speci-
ficity, was acquired for the Entire brain, followed by the Left and Right 
hemisphere, the frontal region of the left hemisphere. This diversity of 
regions likely reflects complex patterns of dysfunction of a set of neural 
networks of regions involved in either phonological or morphological 
word processing by individuals with dyslexia [106,107]. 

Regarding the first experimental condition where the subjects had to 
respond to auditory stimuli, the Random Forests classifier reported high 
levels of accuracy, thus confirming the heterogeneity of rhythm acti-
vation in different regions between the two groups of the sample [108]. 
More specifically, higher activation was noted in the left temporal re-
gion, which is the main neural region responsible for sound-based 
phonological representations [109], demonstrating the difficulty of in-
dividuals with dyslexia to make correct auditory word discrimination. 
The findings are in agreement with the results of Gori et al. [34] and 
Kandel et al. [110], enriching the hypothesis that left temporal low 
activity reveals a strong interaction between auditory processing diffi-
culties and reading impairments. Similar findings provide neurobio-
logical evidence of underlying nervous system dysfunction in posterior 
regions of the brain, including the parieto-temporal region and the 
temporo-occipital region [111]. These atypical abnormalities in the left 
temporo-occipital region of the brain may play an important role in 

Table 3 
Classification performance of Random Forests concerning each RoI (ACC: Ac-
curacy, SENS: Sensitivity, SPEC: Specificity) for the second Condition.  

RoI ACC (%) SENS (%) SPEC (%) 

Entire brain 95.12 (1.92) 97.34 (1.92) 93.08 (1.91) 
Left hemisphere 93.22 (2.17) 97.04 (2.18) 89.94 (2.17) 
Right hemisphere 87.25 (3.15) 86.51 (3.16) 88.02 (3.17) 
Left frontal 86.36 (3.69) 87.81 (2.94) 85.00 (2.94) 
Left temporal 81.34 (3.69) 80.58 (3.7) 82.05 (3.64) 
Left occipital 79.46 (2.88) 81.00 (2.89) 78.24 (3) 
Right frontal 83.10 (3) 81.36 (3) 85.07 (3.03) 
Right temporal 81.86 (3.47) 82.82 (3.47) 80.99 (3.47) 
Right occipital 83.58 (3.31) 82.19 (3.32) 85.05 (3.3)  

Table 4 
Classification performance of Random Forests concerning each RoI (ACC: Ac-
curacy, SENS: Sensitivity, SPEC: Specificity) for the third Condition.  

RoI ACC (%) SENS (%) SPEC (%) 

Entire brain 98.01 (1.53) 98.73 (1.53) 97.39 (1.62) 
Left hemisphere 95.37 (2.18) 97.41 (2.18) 93.39 (2.14) 
Right hemisphere 91.00 (2.81) 90.75 (2.81) 91.23 (2.84) 
Left frontal 86.02 (3.54) 89.77 (3.54) 82.68 (3.46) 
Left temporal 84.35 (3.26) 85.27 (3.26) 83.40 (3.25) 
Left occipital 88.19 (2.87) 90.38 (2.88) 86.07 (2.9) 
Right frontal 82.83 (3.39) 82.49 (3.4) 83.12 (3.53) 
Right temporal 85.02 (3.4) 87.17 (3.4) 82.91 (3.37) 
Right occipital 87.41 (2.88) 87.90 (2.89) 86.88 (2.89)  
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word recognition and the integration of phonological processes [112], as 
well as support impaired phonological awareness in individuals with 
dyslexia [43]. 

The second experimental condition, where the subjects responded in 
visual stimuli, reported high levels of accuracy in the classification of 
subjects with and without dyslexia, revealing differences in the activa-
tion of the occipital and parietal regions of the right and left hemi-
spheres. Importantly, this finding confirms similar studies where motor 
and sensory information differentiation between the two hemispheres 
was observed in people with dyslexia [43]. These developmental 
changes or asymmetries in the neural network of brain structures may 
form the basis for explaining sensory and cognitive problems in dyslexia. 
Similar findings of underactivation in the left parietal lobe were re-
ported in similar studies in children with dyslexia during phonological 
awareness tests [7,111]. Furthermore, the differences in the parieto- 
occipital regions are consistent with findings from similar EEG studies 
between individuals with dyslexia and control groups [113]. 

Finally, the best classification performance compared to the two 
previous conditions was achieved when participants had to visually 
discriminate groups of words with the accompaniment of background 
music. This characteristic finding may indicate that the presence of the 
musical stimulus plays a crucial role in the greater activation of the right 
frontal, temporal, and parietal regions in students with dyslexia in an 
attempt to cope with the cognitive demands of the task. At the same 
time, the lower activation of the parietal region likely demonstrates the 
contribution of the specific musical Mozart excerpt to the alertness and 
brain stimulation during cognitive function [114]. A study aimed at 
determining the effect of Mozart’s music on brain activity found that 
people who listened to Mozart had less brain activity and performed 
better when given cognitive tests [115]. This is partly explained by the 
fact that the right temporal cortex is responsible for planning complex 
cognitive behaviour and helps in decision making [116]. However, most 
of these reports [117] only present the effect of Mozart music in a typical 
adult population [114,118], without investigating this effect on the CNS 

Fig. 5. Comparison of Accuracy scores of each condition for each RoI.  

Fig. 6. Roc Curve of Classification Performances in Different Brain Regions at 
Condition (1). 

Fig. 7. Roc Curve of Classification Performances in Different Brain Regions at 
Condition (2). 
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in adults with dyslexia. 
The Emotiv EPOC+, a commercial EEG wearable device was evalu-

ated presenting good discrimination results. The proposed study shows 
the ability of such a lifestyle device to capture adequately the differences 
in brain dynamics among healthy young adults and age-matched sub-
jects with learning disorders. To the best of our knowledge, this is the 
first time a sophisticated, light-weighted and wearable device is used to 
record EEG signals aiming to analyze dyslexia-related RoI. In a recent 
conference paper, Gunet Eroglu et al. [80] utilized Emotiv EPOC + and 
designed a neurofeedback mobile app in an attempt to improve cogni-
tive functions in children with dyslexia. In the literature, Zainnudin et al. 
[105] also utilized a restrained number of electrodes and a good clas-
sification outcome was obtained. However, results of the proposed study 
cannot be directly compared with this study since brain activations 
differ among children and adults. Furthermore, it should be taken into 
consideration the fact that the adults follow long-term intervention 
programs, even from the preschool age. 

Despite several statistically significant results which revealed 
generally high levels of accuracy concerning the correct classification of 
the two groups of subjects, there were some limitations in this study 
worth mentioning. Firstly, although the sample of the study consisted of 
a relatively small number of subjects (12 students with dyslexia and 14 
controls), it has to be argued that in medical research the number of 

Fig. 8. Roc Curve of Classification Performances in Different Brain Regions at 
Condition 3. 

Fig. 9. ACC, SENS, SPEC scores for every RoI in every condition.  

Table 5 
A representation of the most recent EEG-based studies related to dyslexia.  

Author Database 
(DYS/CN) 

Recording Status EEG Duration Age 
(years) 

No. of 
Electrodes 

Methodology Results (%) SPEC 

ACC SENS 

Andreadis et al. 
(2009) [81] 

38/19 auditory stimulus 500 ms 
before/after 
stimuli 

2–13 15 Approximate Entropy, SVM Not 
reported 

89.47  59.87 

Frid & Breznitz 
(2012) [82] 

20/30 auditory stimulus 200 ms before 
stimuli 

24–40 64 Positive Area (Ap), Spectral Flatness 
Measure, statistical features and 
Power Spectral Density, SVM 

84.60 Not reported 

Rezvani et al. 
(2019). [83] 

29/15 resting state 2 min 8 64 37 features from graphs, SVM (linear) 95.56 Not reported 

Zainuddin et al. 
(2016) [105] 

20/10 resting state, writing Not reported 7–12 8 DWT, coefficient of β and ratio θ/β, 
ELM 

89.00 Not reported 

This work 12/14 auditory, visual, 
visual with 
background music 

28 min 19–26 12 filtering, Energy δ, θ, α1, α2, β1, β2, γ, 
Shannon Entropy, Random Forests 

87.04 90.91  80.95  
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subjects is most limited [69]. In addition, even though there are no 
sufficient studies using adults’ subjects with dyslexia, the sample size 
was consistent with studies using similar classification methodology 
[119]. Secondly, the categorization of the participants into two groups 
(Control and Students with Dyslexia) was established on a previous 
formal diagnosis of their reading and writing difficulties, while one clear 
difference between students of a university and other young people with 
dyslexia was that students have received more long-term training than 
other young people in all kinds of language-related and other cognitive 
abilities. However, the classification performed in this study, provided 
quite good results for their dyslexia patterns’ identification, underling 
thus the continuity of their learning difficulties. Finally, a major issue we 
had to deal with was the electrodes’ detachment during recording. Even 
though the connectivity was checked regularly during the experiments, 
the spatial information had to be reduced; however, classification per-
formance is sufficient. Results showed that even with a rather small 
number of channels from the occipital/parietal region dyslexia can be 
detected with an accuracy of approximately 70%. 

6. Conclusion 

In summary, this is the first report examining a variety of features 
over different experimental conditions with a high classification accu-
racy that results in correct discrimination between higher education 
students with and without dyslexia. The proposed method combines a 
non-invasive BCI device which is less costly (than usually clinical cases) 
and causes minimal discomfort and a linguistic software tool that en-
hances the interaction capabilities of the subjects, thus encouraging 
more dyslectic people to participate in our research. Our main goal is to 
enrich our EEG dyslexic database by performing early screening of the 
population in a costless way offering optimizations through the findings 
to assist future research in dyslexia prognosis. 

Institutional Review Board Statement. 
The study was conducted according to the guidelines of the Decla-

ration of Helsinki and approved by the Ethics Committee of University of 
Ioannina (1358/04–11-2016). 

Informed Consent Statement. 
Informed consent was obtained from all subjects involved in the 

study. Written informed consent has been obtained from the participants 
to publish this paper. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We acknowledge support of this work by the project “Immersive 
Virtual, Augmented and Mixed Reality Center Of Epirus” (MIS:5047221) 
which is implemented under the Action “Reinforcement of the Research 
and Innovation Infrastructure”, funded by the Operational Programme 
“Competitiveness, Entrepreneurship and Innovation” (NSRF 2014- 
2020) and co-financed by Greece and the European Union (European 
Regional Development Fund). 

References 

[1] I.S. Fortes, C.S. Paula, M.C. Oliveira, I.A. Bordin, J. de Jesus Mari, L.A. Rohde, 
A cross-sectional study to assess the prevalence of DSM-5 specific learning 
disorders in representative school samples from the second to sixth grade in 
Brazil, European child & adolescent psychiatry 25 (2) (2016) 195–207, https:// 
doi.org/10.1007/s00787-015-0708-2. 

[2] M. Habib, The neurological basis of developmental dyslexia, Brain 123 (12) 
(2000) 2373–2399, https://doi.org/10.1093/brain/123.12.2373. 

[3] F. Ramus, M. Ahissar, Developmental dyslexia: the difficulties of interpreting 
poor performance, and the importance of normal performance, Cognitive 

neuropsychology 29 (1–2) (2012) 104–122, https://doi.org/10.1080/ 
02643294.2012.677420. 

[4] World Health Organization, ICD Classification of Mental and Behavioral 
Disorders: Diagnostic Criteria for Research, Switzerland, Geneva, 1993. 

[5] American Psychiatric Association, DSM-5 Task Force. Diagnostic and statistical 
manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing, 
Inc. 2013. 

[6] M.J. Snowling, From language to reading and dyslexia, Dyslexia (Chichester, 
England) 7 (1) (2001) 37–46, https://doi.org/10.1002/dys.185. 

[7] E. Paulesu, J.F. Démonet, F. Fazio, E. McCrory, V. Chanoine, N. Brunswick, S. 
F. Cappa, G. Cossu, M. Habib, C.D. Frith, U. Frith, Dyslexia: cultural diversity and 
biological unity 291 (2001) 2165–2167. 

[8] F. Ramus, S. Rosen, S.C. Dakin, B.L. Day, J.M. Castellote, S. White, U. Frith, 
Theories of developmental dyslexia: insights from a multiple case study of 
dyslexic adults, Brain 126 (4) (2003) 841–865, https://doi.org/10.1093/brain/ 
awg076. 

[9] F.R. Vellutino, J.M. Fletcher, M.J. Snowling, D.M. Scalon, Specific reading 
disability (dyslexia): what have we learned in the past four decades? Journal of 
Child Psychology and Psychiatry 45 (1) (2004) 2–40, https://doi.org/10.1046/ 
j.0021-9630.2003.00305.x. 

[10] S.E. Shaywitz, B.A. Shaywitz, Dyslexia (specific reading disability), Biological 
psychiatry 57 (11) (2005) 1301–1309, https://doi.org/10.1016/j. 
biopsych.2005.01.043. 

[11] M.J. Snowling, Phonological processing and developmental dyslexia, Journal of 
Research in Reading 18 (1995) 132–138, https://doi.org/10.1111/j.1467- 
9817.1995.tb00079.x. 

[12] Snowling, M. J. Dyslexia (2nd ed.). 2000, Blackwell Publishing. 
[13] F.R. Vellutino, D.M. Scanlon, D. Spearing, Semantic and phonological coding in 

poor and normal readers, Journal of experimental child psychology 59 (1) (1995) 
76–123, https://doi.org/10.1006/jecp.1995.1004. 

[14] F.R. Vellutino, J.M. Fletcher, Developmental Dyslexia, in: M.J. Snowling, 
C. Hulme (Eds.), Blackwell handbooks of developmental psychology. The science 
of reading: A handbook, Blackwell Publishing, 2005, pp. 362–378. 

[15] R.I. Nicolson, A.J. Fawcett, Developmental dyslexia, learning and the cerebellum, 
Journal of neural transmission. Supplementum 69 (2005) 19–36, https://doi.org/ 
10.1007/3-211-31222-6_2. 

[16] N.A. Taroyan, R.I. Nicolson, A.J. Fawcett, Behavioural and neurophysiological 
correlates of dyslexia in the continuous performance task, Clinical 
neurophysiology: official journal of the International Federation of Clinical 
Neurophysiology 118 (4) (2007) 845–855, https://doi.org/10.1016/j. 
clinph.2006.11.273. 

[17] C.J. Stoodley, J.F. Stein, Cerebellar function in developmental dyslexia, 
Cerebellum 12 (2) (2013) 267–276, https://doi.org/10.1007/s12311-012-0407- 
1. 

[18] P. Tallal, Auditory temporal perception, phonics, and reading disabilities in 
children, Brain and language 9 (2) (1980) 182–198, https://doi.org/10.1016/ 
0093-934x(80)90139-x. 

[19] U. Goswami, A temporal sampling framework for developmental dyslexia, Trends 
in Cognitive Sciences 15 (2011) 3–10, https://doi.org/10.1016/j. 
tics.2010.10.001. 

[20] W.J. Lovegrove, M.C. Williams, Visual temporal processing deficits in specific 
reading disability, in: D.M. Willows, R.S. Kruk, E. Corcos (Eds.), Visual processes 
in reading and reading disabilities, Lawrence Erlbaum Associates Inc., 1993, 
pp. 311–329. 

[21] T.R. Vidyasagar, K. Pammer, Dyslexia: a deficit in visuo-spatial attention, not in 
phonological processing, Trends in cognitive sciences 14 (2) (2010) 57–63, 
https://doi.org/10.1016/j.tics.2009.12.003. 

[22] M. Dubois, S. Kyllingsbaek, C. Prado, S.C. Musca, E. Peiffer, D. Lassus-Sangosse, 
S. Valdois, Fractionating the multi-character processing deficit in developmental 
dyslexia: Evidence from two case studies, Cortex; a journal devoted to the study of 
the nervous system and behavior 46 (6) (2010) 717–738, https://doi.org/ 
10.1016/j.cortex.2009.11.002. 

[23] Pennington B. F. From single to multiple deficit models of developmental 
disorders. Cognition, 2006, 101(2), 385–413. 8, https://doi.org/10.1016/j. 
cognition.2006.04.008. 
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[80] G. Eroğlu, S. Aydın, M. Çetin, S. Balcisoy, Improving cognitive functions of 
dyslexies using multi-sensory learning and EEG neurofeedback, in: In 2018 26th 
Signal Processing and Communications Applications Conference (SIU), 2018, pp. 1–4, 
https://doi.org/10.1109/siu.2018.8404711. 

[81] Andreadis, I. I., Giannakakis, G. A., Papageorgiou, C., & Nikita, K. S. Detecting 
complexity abnormalities in dyslexia measuring approximate entropy of 
electroencephalographic signals, Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, 2009, Minneapolis, MN, USA, pp. 
6292-6295, https://doi.org/10.1109/iembs.2009.5332798. 

[82] Frid, A., & Breznitz, Z. An SVM based algorithm for analysis and dis- crimination 
of dyslexic readers from regular readers using ERPs. In: 2012 IEEE 27th convention 
of electrical & electronics engineers in Israel (IEEEI), 2012, 14–17 Nov 2012, pp 1–4, 
https://doi.org/10.1109/eeei.2012.6377068. 
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