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Abstract—Touch is a fundamental aspect of human interaction 

with the surrounding environment. It affects individuals’ 

development in different manners and figures prominently in 

everyday operations such as the sense of presence, object 

recognition, performing actions, non-verbal communication and 

emotional state. In recent years there has been a growth of interest 

in researching the electrophysiological activity of the brain 

originating from haptic stimulation. In the present preliminary 

experiment, we performed a classification process of extracted EEG 

features acquired from four healthy participants’ EEG data when 

they actively touched different natural textures. Each participant was 

asked to use their fingertips and calmly rub for one minute, each of 

the three different textured materials (smooth, rough and water 

surface). EEG recordings were acquired and processed. Next,  time 

and frequency-based features were extracted and used as input  to 

four classifiers to correctly identify each different texture. The 

results obtained show a classification performance of 63% with C4.5 

algorithm and 76% with Random Forests and 10-fold cross-

validation. 

Keywords——Classification; Electroencephalogram; EEG; 

Machine Learning; Haptic; Active touch 

 
I. INTRODUCTION 

 

The sense of touch is one of our basic mechanisms for 
perceiving and exploring the world around us. It starts 
developing in the infancy stages [1] and accompanies us for the 
rest of our lives playing an effortless but major role. Loss of the 
sense of touch would lead to losing the feelings of pain and 
temperature, losing the sense of presence and much more [2]. 

Exploring our surroundings requires a kind of 
movement/interaction with an object’s surface using our 
fingertips due to their high sensitivity. Starting from the 
mechanical stimulation of the skin, different types of 
mechanoreceptors convert energy that leads into the production 
of a nerve signal that travels through the spinal cord and 
thalamus, to the brain and more specifically the primary 
somatosensory cortex [3]. Once the signal has reached the brain 
coming from the different nerve pathways, signals travel to the 
post-central gyrus (S1, S2) and other higher-order areas (or 
somatosensory areas). The processing of that signal in the brain 
combined with the cutaneous, kinesthetic and thermal 
information is referred to as haptic perception. 

Haptic perception is a subjective experience [4], [5] and 
apart from its apparent importance in drawing information for 

daily tasks regarding object manipulation and performing 
actions, it impacts the emotional and social human cognition 
[6], [7]. Geometric and physical properties of the surfaces 
touched can be perceived including roughness, texture type, 
hardness or temperature [8]. The form of touch can be either 
active, thus including voluntary movement or passive (tactile). 
Perceptual differences between each form are not yet fully 
understood and numerous articles substantiate the different 
approaches [9], [10]. Visual, auditory and memory aspects also 
contribute to haptic perception thus forming a multimodal 
process [4]. 

Decoding haptic modality is of great significance due to its 
various applications in the medical, technological and industrial 
fields along with the social, cognitive and affective parts of 
human activity. Such applications can be limb rehabilitation, 
interface and application design or interactive media. Methods 
of neuroimaging such as functional Magnetic Resonance 
Imaging (fMRI) and Electroencephalogram (EEG) have made 
it possible to observe the response of the brain cortex to touch 
stimuli in a non-invasive way. EEG particularly, offers a low 
cost high temporal solution that can be utilized under different 
experimental scenarios due to its portability and ease of use. 
Research interest in using EEG to study haptic sensation has 
been increasing over the last few years. Most studies examine 
the activity of basic brain frequency bands or explore the 
function of the somatosensory pathways and the neural 
responses related to haptic input using analysis techniques such 
as PSD, ERP, SEP and SSSEP [7], [11]. Recent 
implementations of EEG analysis incorporate machine learning 
techniques attempting to algorithmically classify different brain 
states under haptic stimuli. These studies investigate 
discriminative touch and touch imagery [12] [13], roughness 
recognition classification [10], [14], [15] and tactile 
pleasantness in response to different textures or type of touch 
[16], [17], [6]. 

The objective of this preliminary study is to discriminate 
between different natural material textures during active touch 
using EEG and classify them with different machine learning 
algorithms. Despite the renewed research interest in 
capitalizing on machine learning algorithms and EEG [18] to 
the best of our knowledge, only a few studies have focused on 
examining the haptic modality and even fewer that employ 
multiple algorithms in their approach. In Section II a description 
of the experimental protocol is laid out along with the EEG 
signal acquisition and data processing. Next, Section III reports 
the classification accuracy results and discussion. Finally, 
Section IV includes the conclusion and future work. 
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II. METHODOLOGY AND MATERIALS 

In the proposed approach, the EEG signals were acquired 

from the Emotiv EPOC Flex wearable device and features re-

extracted from the OpenViBE BCI software [19]. A flowchart 

of the proposed classification process is depicted in Figure 1. 

A. Participants 

Four healthy participants, with no history of neurological or 
psychiatric disorders, voluntarily took part in the experiment. 
Two of them were male and two females, all right-handed and 
aged between 25-27. The study was under the supervision of the 
Department of Informatics and Telecommunications of the 
University of Ioannina. All participants were informed about 
the procedure and were asked to read and sign a written consent 
form before the experiment, after ensuring that there was no 
question nor hesitation regarding the experimental protocol or 
data privacy. 

 

 

Fig. 1. Flowchart of the classification process followed. Signal N 
correspond to the resting state whereas Signals S, R and W 
correspond to smooth, rough, and water material textures 
respectively. 

 

 

 

B. Experimental Procedure 

Experiments were held in a controlled environment. 
Participants were asked to comfortably be seated in a chair 
within a clinical environment. Initially, a researcher explained 
the procedure to the participants. Before the experiments, 
participants got familiar with the device and were instructed to 
remain calm and relaxed during the procedure. Then, their 
dominant hand (i.e. right hand) was positioned in a fixed place 
on an ergonomic arm support. The different texture materials 
were placed in front of them on a table so that they could be 
 seen. Subsequently, they were asked to relax and remain calm 

for one minute before any task begins. Next, participants were 
asked to use the fingertips of their right hand to softly rub each 
texture for one minute, in a circular, clockwise manner, without 
applying pressure on any material. Also, they were asked not to 
actively think about the type of texture they were interacting 
with. The procedure was repeated three times for each 
participant and sufficient resting time was given in between 
changing materials and repetitions. The protocol in brief steps: 

• A 1-minute resting-state recording 

• A 1-minute recording during active texture rubbing 

• A 2-minute short break with no stimuli 

Then, the protocol was repeated for two more trials. The 
procedure was constantly supervised by an experienced 
researcher of the team. 

 

C. Materials 

Three natural material textures were used in this preliminary 
experiment. Two with different levels of roughness (smooth 
and rough) and room temperature water. All materials were 
placed at the same height level relative to each participants’ 
hand so that any different postures and movements of the hand 
would be minimized while touching the surfaces. 

 
D. Data acquisition 

The proposed Brain-Computer Interface (BCI) system 
utilizes the EPOC Flex head cap system. EPOC Flex is a 
wearable EEG recording device equipped with a rechargeable 
lithium battery and 32 gel Ag/AgCl sensors for recording brain 
signals. Each sensor is placed at certain locations in the scalp 
(F3, F4, FC3, FC4, C1, C3, C5, CZ, C2, C4, C6, CP1, 
CPZ and CP2 etc.), according to the 10-20 International System 
with a frequency response of 0.16 – 43 Hz. The visualization of 
the recordings along with the quality of the connectivity was 
performed with Emotiv software (EmotivBCI) in real-time. 

In the proposed experimental protocol, three sessions were 
held to capture EEG data, ensuring the quality of the recordings. 
The data were digitized at a sampling rate of 1024 Hz, 
downsampled to 128 Hz and transmitted to a PC using a 
wireless connection. The quality of each sensor’s connection 
and the humidity of the pads were regularly checked through 
the EmotivBCI software to ensure high conductivity and quality 
of the recording. 

 

E. EEG data processing and feature extraction 

The OpenViBE BCI [19] software is used for processing the 
recorded signals and has been previously used successfully [20]. 
OpenVibe is an open-source software platform for real-time 
BCI applications and it is freely available from the French Inria 
Institute. It includes a design tool for creating and running 
applications and many more features that are already predefined 
for use. OpenVibe can be used to obtain, filter, process and 
visualize signals from the human brain. It is an easy-to-use 
environment and includes a Scenario Designer canvas for script 
development incorporating many functions to use and an 
Acquisition Server that provides the drivers for the 



direct communication between the EEG device and the 
software. 

The platform use is twofold: a) for offline applications with 
EEG laboratory prerecorded data and b) for online application 
with EEG signals obtained in real-time. Regarding the 
quantitative EEG information extracted from each subject, the 
.csv file retrieved from the EEG headset was made compatible 
with the software through a script developed in MATLAB and 
then was segmented into epochs of 1 second with 0.5 seconds 
interval offset. After that, 11 different characteristics were 
calculated, wherein six of them are statistical features. These 
statistical features are computed through the "Univariate 
Statistics" box of the OpenVibe BCI software. The “Spectral 
Analysis” box performs Fast Fourier Transform to analyze the 
EEG epochs and extract the spectral features. Time and 
frequency properties are extracted for each epoch creating the 
classification dataset. More specifically, as far as the spectral 
components are concerned the spectrum amplitude for the five 
frequency bands of interest is extracted: 

 
 

Fig.2 The scenario for epoching, data processing and feature extraction 
within OpenViBE BCI platform. 

 
• Alpha waves frequency: 8-12 Hz. 

• Beta waves frequency: 12-25 Hz. 

• Theta waves frequency: 4-8 Hz. 

• Delta waves frequency 1-4 Hz 

• Gamma waves frequency 25-40 Hz 

 
Regarding the Time-Based Features, for each epoch, the 

Mean Value, Variance, Range, Median, IQR and 30% 
Percentiles are extracted. 

Finally, the "Feature Aggregator" box of the software forms 
an array with all the extracted EEG attributes to train several 

classifiers. Specifically, the columns of the feature table contain 
the received characteristics and the rows represent the instances 
of these characteristics. Thus, for each epoch, a set of 11 spectral 
and time-based features is calculated. All the EEG features are 
exported to a .csv file. In Figure 1, the OpenViBE scenario is 
presented and Table I presents, in brief, the extracted EEG 
features. 

 

F. Classification 

The validation of the proposed system is performed on 4 
classification algorithms, specifically Linear Discriminant 
Analysis (LDA), Support Vector Machines, K-Nearest 
Neighbor (KNN) and Random Forests. The Weka [20] platform 
was employed for the classification purposes of the study. 
Again, the exported .csv file containing all the features for each 
EEG signal was made compatible with Weka through a Matlab 
script. Four different algorithms were hired to solve a 4-class 
problem aiming to discriminate between the different natural 
material textures (resting state, smooth, rough and water). 

1) Linear Discriminant analysis 

Linear Discriminant Analysis (LDA) is used in statistics, 
pattern recognition and machine learning to find a linear 
combination of characteristics that will separate the instances. 
This linear combination can be used as a linear classifier. The 
LDA method performs well when the measurements made in 
independent variables for each observation are continuous 
variables. The representation of the LDA is a straight line, while 
the statistical properties are calculated from the data and linked 
to the LDA equation to make the necessary predictions [22]. 

 
 

TABLE I. EXTRACTED EEG FEATURES 
 

 Feature Details 

Feature type Feature Description 

1  

 

 

Time-Based 

Features 

Mean value of EEG signal epoch 

2 Variance of EEG signal epoch 

3 Range of EEG signal epoch 

4 Median value of EEG signal epoch 

5 Inter- Quantile-Range 

6 Percentiles (30%) 

7  

 
Spectral 

Features 

Spectrum Amplitude for Band (1-4 Hz) 

8 Spectrum Amplitude for Band (4-8 Hz) 

9 Spectrum Amplitude for Band (8-12 Hz) 

10 Spectrum Amplitude for Band (12-25 Hz) 

11 
 

Spectrum Amplitude for Band (25-40 Hz) 

 

 
2) Support Vector Machines 

Support Vector Machines (SVM) have widely been used in 
biomedical applications and particularly in EEG analysis. The 
basic idea underlying the SVM classifier is to map the features 
into 



a high-dimension feature space and locate an optimal separating 
hyperplane to maximize the distance between the margin and 
the data lying on the margin (i.e. support vectors) while 
maintaining a low classification error [23]. 

3) k- Nearest Neighbor 

kNN is one of the simplest machine learning supervised 
algorithms. In this non-parametric method, the classification of 
an instance to the most relative class is based on the vote of its 
k nearest neighbors, with k being a positive integer. This simple 
technique is widely used in biomedical applications [22]. 

4) Random Forests 

Random Forests proposed by L. Breiman [24] is an 
ensemble learning method that is widely used in EEG-based 
classification problems. The method is an extension to the 
bagging idea and combines decorrelated decision trees, aiming 
to reduce the generalization error and improve the classification 
accuracy. In this classifier, a group of features is selected to 
train and test each individual decision tree and then each tree is 
responsible for its classification while in the end, the trees vote 
for the most popular class. 

Overall, for each algorithm 10-fold-cross-validation testing 
method was used. Weka’s implementations of both the 
algorithms and the testing method were used. Two different 
data sets were used for the classification. First, all the spectral 
and time features were included in the dataset and secondly, 
only the frequency features were included. 

 

 
III. RESULTS AND DISCUSSION 

Table II presents the accuracy levels results achieved by 
each classification algorithm when all the temporal and spectral 
features are included, compared to only using temporal features. 

 
 

TABLE II. RESULTS IN TERMS OF CLASSIFICATION 

ACCURACY FOR EACH CLASSIFICATION ALGORITHM FOR THE 4-CLASS 

PROBLEM RESTING-STATE- SMOOTH-ROUGH-WATER 
 

Algorithm Accuracy 

 Temporal and Spectral 

Features 
Spectral features 

LDA 71.4931 65.9722 

Random 

Forests 
76.7014 72.5347 

KNN 64.2014 56.2500 

SVM 75.3472 63.1944 

 

 

 

 
Results showed accuracy levels of the classification 

experiments ranging between 64% to 76%, indicating that the 
EEG signal characteristics can indeed be used to identify the 
diverse brain states when different haptic stimuli are applied. 

This is supported by the fact that the performance level of the 
classification algorithms considerably exceeds the level of 
opportunity for each class (25%). Additionally, it is important 
to notice the fact that higher accuracy is achieved in all 
classification algorithms when all features are employed in 
contrast to using frequency features only. Suggesting that time 
features like mean value and standard variation incorporate 
information that should be utilized. Moreover, the nature of the 
classification problem appears to have linear characteristics 
since both LDA and linear kernel SVM achieve much higher 
accuracy levels, similar to Random Forests. On the contrary, 
kNN algorithm achieves the lowest accuracy levels, implying 
that the problem is not favored by the localization of samples in 
the feature space. 

 
IV. CONCLUSION AND FUTURE WORK 

In the present study, EEG data acquired from multiple 
participants were used to assess the brain activity caused by 
haptic stimulus. Participants were exposed to four different 
types of stimuli, one of which was neutral and therefore no 
haptic nor any other kind of sensory stimuli was present (visual, 
auditory etc). EEG recordings were collected with the Emotiv 
Flex device using multiple channels (34 recording channels). 
Similar studies have been carried out in recent years providing 
useful insight into the field of physiology and psychology of 
humans. Therefore, the variations in the methodology of the 
present study further contribute to the research field. The signals 
collected, were divided into epochs of 1 second, time and 
frequency features were extracted and were used in 
combination for creating a scenario within the OpenVibe open-
source software. Finally, the signal samples were classified 
using four different classification algorithms (LDA, KNN, 
Randoms Forests, SVM) aiming to identify whether brain 
signals behave distinctly under different haptic stimuli. 

Future work which builds on the present study concerns the 
field of human psychology and physiology. Indicatively, we 
propose leveraging immersive technology such as Virtual 
Reality to incorporating human emotion (pleasure/displeasure), 
cognitive and imagery aspects as well as, kinesthetic and tactile 
associations with haptic stimuli. Furthermore, improving the 
feature selection process by analyzing the neurophysiological 
activity of the brain in conjunction with increasing the 
participant pool could produce more accurate and generalizable 
results. Finally, the experimental procedure along with the 
recording protocol can be further optimized by leveraging 
existing literature. 
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