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Abstract—Brain-computer interface (BCI) is a rapidly grow-
ing field with various applications in many domains such as
medical, gaming and lifestyle. This paper presents a 3D non-
invasive BCI game. Muse 2 headband is used for acquiring
electroencephalogram (EEG) data and OpenViBE platform for
processing the raw signals and classification. The game is devel-
oped in Unity game Engine. Several subjects are included in the
study and EEG signals are recorded for three different mental
states i.e. left and right Motor Imagery and eye blink, before
playing the game for ten times, aiming to collect coins. Average
classification result is 94.86% and average coins collected from
the users is 30.8 out of 50 coins. Furthermore, longer periods of
playing the game leads to increased control over the game.

Keywords—Brain computer interface (BCI); Electroencephalog-
raphy (EEG); 3D Game; Motor Imagery; Muse 2; OpenViBE; Unity

I. INTRODUCTION

Brain-computer interface (BCI) is a sub-class of human-
computer interaction (HCI) that requires minimum amount of
physical movement. This technology establishes a communica-
tion pathway between the brain and a computer device [1]. BCI
research was mainly focused on paralyzed or disabled patients,
but new developments like wireless commercial electroen-
cephalogram (EEG) devices make BCI viable for everyone.
The main advantage of BCI is the hands-free interaction to
accurately control machines with the power of the brain.

BCIs can be divided into two categories, invasive and non-
invasive. Invasive techniques require electrodes that have been
surgically implanted on the human brain. It can produce better
signal quality regarding the noise, amplitude and raw data. The
main target of invasive BCI are paralyzed and blind patients,
because neurosurgery is a dangerous process.

Non-invasive BCIs record information from electrodes
placed on the scalp. No surgery is required to implant the sen-
sors and this technique do not use any hazardous methods. The
most common BCI recording mechanism is the EEG, which
uses scalp positioned sensors that measure the brain electrical
potentials with millisecond resolution. There are two types of
EEG devices, clinical caps and commercial headbands. Clinical
caps usually have 32 or 64 electrodes positioned over distinct
brain regions and produce high quality EEG signals. However
they are not portable and their applications are limited. On

the other hand, electrodes on the commercial EEG devices
range from 1 to 32 and they are used in applications where
portability is required i.e. BCI controlled vehicles, gaming etc.
Researchers are mainly focusing on the non-invasive category
because it is a more secure technique. The drawback of this
category is that the signals are distorted and contain artifacts.

BCI has seen progress in the medical field, for example
for prosthesis control or as biofeedback therapy for the treat-
ment of neurological disorders [2]. Because of this progress,
researchers are trying to expand BCI beyond the medical field.
In the last years several studies have been published that shifts
BCI research towards gaming.

In this work, a 3D BCI controlled game is developed with
three different Motor Imagery commands. Unity Engine is used
to create the 3D game and OpenViBE platform is employed
for the BCI development. Seven subjects participated in the
experiment and Muse 2 headband is used for recording the raw
EEG data. The goal of the game is to collect as many coins
as possible using motor imagery for left and right movement.

II. RELATED WORK

Gezgez and Kaçar [3] developed a 2D game with two
levels that controls an avatar with BCI. For translating the
brain signals and the facial expressions into avatar movement
they used Emotive Epoc+. The BCI was trained with two
commands, shoot and forward. The BCI was trained with brain
commands ”Push” and ”Right”, matching shoot and forward
for the avatar. The same process was applied for ”Clench”
and ”Smile” corresponding to shooting and goind forward. The
average time to finish level 1 and level 2 with brain commands
is 41.9 and 56.5 seconds while for facial expressions is 39.4
and 41.4 respectively.

Pires et al. [4] developed a Tetris based game controlled
by a non-invasise BCI. It has three unique levels, two of
them are based on P300 and one that combines the P300
and sensorimotor rhythms. Two participants with no BCI
experience performed the online sessions. Version 1 can be
controlled effectively with a small amount of event repetitions.
Version 2 has a higher target probability, therefore is harder
t control. It was observed that the player mainly fails on
selecting the position so the addition of MI to control the
pieces in version 3 is a good option.
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Bordoloi et al. [5] developed a motor imagery based BCI
maze game. The game has four different MI mental commands,
both hands up for moving forward , tighten both fists for
moving backwards, right hand up for moving right and left
hand up for moving left. The EEG data acquired with an EEG
cap that has only two electrodes C3, C4 from thirteen subjects.
RBF kernel Support Vector Machine was used to classify the
processed EEG data and the classification accuracy is between
60% to 70%. As for the gameplay the user has to drive from
his initial position (”Start”) to a target position (”Goal”). The
results of this work indicates that subjects could achieve a
significant level of mental control and they managed to drive
around the maze.

III. METHODS

The proposed method is developed using the OpenViBE
BCI software [6], which is a free and open-source platform
for designing, testing and using BCIs. OpenViBE provides
a Scenario Designer where the users can process their data
with ”Box algorithms” in a tree view environment and develop
BCIs for real or virtual applications and an Acquisition Server
which provides drivers for connecting BCI devices with the
OpenViBE software.

A. Offline Processing and Classification

1) Acquiring EEG Data: Muse 2 headband is used for
recording EEG data. This headband is a commercial EEG
device that connects to a computer via Bluetooth. It was chosen
due to it’s low price, it’s flexibility and it’s size. Muse 2 has
four EEG electrodes, two on the left (TP9, AF7), two on the
right (AF8, TP10) and a ground electrode as it is shown in fig.
1. For acquiring the EEG data OpenViBE’s acquisition server
is used. This headband is not listed as a device that OpenViBE
can connect to so lab streaming layer (lsl) [7] is being used
to connect the whole system. Through BlueMuse [8] one lsl
stream is created and connects with OpenViBE’s acquisition
server.

Fig. 1. Muse 2 headband electrodes.

2) Input Signal: One OpenViBE scenario in the Scenario
Designer is created to import, process and classify the raw data.
Features extracted from the imported signals are being used as
training dataset. In this work three different EEG signals (left,
right, blink) should be imported.

3) Time Epoching: Time epoching is a widely used
method in EEG analysis. Specific time-windows are extracted
from the continuous EEG signal and this creates more data
samples for processing. The proposed approach employs win-
dows that last three seconds without any overlap. This practi-
cally means that the classifier is giving a decision every three
seconds. This time window was chosen after trial-and-error
process.

4) Signal Processing and Feature Extraction: After im-
porting the raw data from the EEG recordings, a Butterworth
bandbass filter at 8-40 Hz is applied for each EEG channel to
reduce the noise and the artifacts. Then the signal is epoched
and splited into 5 frequency bands:

• Alpha waves 8-13 Hz

• Beta 1 waves 13-20 Hz

• Beta 2 waves 20-30 Hz

• Gamma 1 waves 30-35 Hz

• Gamma 2 waves 35-40 Hz

The energy of each band is calculated and the obtained features
are used as an input to the classifier.

5) Classification: Linear discriminant analysis (LDA) al-
gorithm is used to classify the EEG data [9]. The strategy that
was used in this mutli-class BCI is ”One vs One” and the
pairwise decision strategy is ”Voting”. When the classifier is
trained the results are stored in an XML file to be used in the
real time classification. Training Scenario is detailed presented
in Fig. 2.

B. Real Time Classification

Acquisition Server is used for real-time testing after the
off-line processing and classification. The same ”boxes” that
have been used in the off-line process are used again and the
classifier results are exported through the ”LSL Export” box
as an OpenViBE-Markers stream and fed into Unity.

IV. GAME DESIGN

In order to develop the 3D game used in this paper, Unity
game engine was employed. Unity can be connected with BCI
technology and create games controlled by brain commands.

In this study a 3D game has been developed Fig. 4 that
consists of a platform on which there is an avatar constantly
moving forward. The objective of the game is to collect coins,
located in several positions in the platform by moving left,
right and jumping. The platform has 3 lanes where the coins
can be, either on the ground or in the air. The number of total
coins is 50 and they are divided into 17 clusters (16 clusters
of 3 coins and 1 cluster of 2 coins).

A. Game scenario

For this work, the standard keyboard input is replaced by
mental commands. The utilization of the LSL allows the game
to receive chunks data from a Markers stream. The data is
pushed sample-by-sample into the game and they are divided
into three categories based on the user mental command.



Fig. 2. OpenViBE offline scenario.

Fig. 3. Aqcuisition client and real time classification.

• If the user is looking right and thinking that he is
moving his right hand then the in-game avatar slides
right.

• If the user is looking left and thinking that he is
moving his left hand then the in-game avatar slides
left.

• If the user blinks, then the in-game avatar jumps.

Fig. 4. Snapshot of the gameplay.

V. RESULTS AND DISCUSSION

1) Dataset: Seven volunteers participated in the experi-
ment. All participants were healthy with normal vision. They
were instructed to sit comfortably in a chair, remain calm
and minimize their movements to perform three separate
recordings. In the first recording, the subjects were instructed
to look left and think that they are moving their left hand. In the
second recording they were looking right and thinking that they
are moving their right hand. In the third recording they were
instructed to blink every two seconds. All three recordings
lasted for five minutes.

After processing the raw EEG data everyone has 97 feature
vectors for each input of the classifier. The average classifica-
tion accuracy is 94.86%, ranging from 88.73% to 100%.

2) Online Testing: All the participants had never been
part of a BCI game experiment. An experienced researcher,



familiar with the procedure, explained the protocol to the
subjects before the beginning of the experimental process.
After the recordings and the offline processing the subjects
started to play the game. They had 10 game trials in order to
get familiar with the game environment and the Unity engine.
After the familiarization process, subjects played the game 10
times in order to evaluate the online procedure. Two evaluation
metrics were used, being the total number of collected coins
collected and the total number of coin clusters. A coin cluster
is considered completed if at least one of its coins is collected
from the player. Table I shows the results of the online testing
(average number of coins and number of clusters for the trials
for each subject).

TABLE I. MI BCI GAME

Average #Coins Average #Clusters Classification Accuracy
Subject1 27.9 (55.8%) 10.2 (60%) 88.73%
Subject2 37.6 (75.2%) 13.5 (79.4%) 99.31%
Subject3 29.6 (59.2%) 10.7 (62.9%) 100%
Subject4 27.7 (55.4%) 10.2 (60%) 96.25%
Subject5 38.9 (77.8%) 13.5 (79.4%) 90.10%
Subject6 29.8 (59.6%) 11.2 (65.8%) 97.26%
Subject7 24.7 (49.4%) 9.1 (53.5%) 92.43%
Average 30.88 (61.77%) 11.2 (65.8%) 94.86%

It should be remarked that the subjects played the game 20
times, 10 for training and getting familiar with the environment
and 10 for the testing phase. All 10 recordings from the testing
phase were used in the analysis, unless there was an error with
the equipment (EEG device moved or Bluetooth connectivity
issues); in this case the recording was repeated. Although the
participants played the game for testing strictly 10 times it was
observed that they got better in every repetition. Subjects 2 and
5 had the best overall performance, with subject 2 achieving
the highest score, collecting 47 coins in his final try. These two
participants almost had perfect control of the in-game avatar
and the only coins that they couldn’t collect with ease was
the coins in the air. Subjects 1, 2, 4 and 6 had quite good
performance and they were able to collect at least 32 coins
in their last tries . Subject 6 was able to collect 40 coins in
his last round of playing. Subject 7 had the worst scores in
the experiment because the classifier couldn’t identify his left
movement fast enough. The average coins collected from all
participants is 30.88 (61.77%) and the average clusters is 11.2
(65.8%).

Table II presents a comparison between our paper and
related work.

TABLE II. COMPARISON OF BCI CONTROLLED GAMES

Authors Subj Repetition
per Subj Results

Bordoloi et al. [5] 13 - Classification results:
64%

Pires et al. [4] 2 - Classification results:
70% - 75%

Gezgez & Kaçar [3] 1 8 Game score results:
Game finished in 25 sec

Our Paper 7 10

Classification results:
88.73% - 100%

Game score results:
30.88 (61.77%) coins

11.2 (65.8%) clusters of coins

Bordoloi et al. [5] developed a maze game to evaluate
the BCI performance. Command accuracy was between 60% -
70%. Support vector machine (SVM) was used as the classifier.

Pires et al. [4] designed a tetris game. They used Fisher
linear discriminant (FLD) classifier that lead to 70% - 75%
classification results. Both the participants managed to control
the game with two motor imagery commands. Gezgez & Kaçar
[3] used three classification algorithms, and for evaluating the
game they created a time-based score which measures the time
until a user completes the game.

VI. CONCLUSION

In this paper a BCI game with three different Motor
Imagery commands is developed. Unity Engine was used to
create the 3D game and OpenViBE platform was employed for
the BCI development. For recording the raw EEG data, Muse
2 headband was used.

Seven subjects participated in the experiment and played
the BCI game. The goal was to collect coins using mental
commands. After getting familiar with the BCI environment,
subjects were able to control the in-game avatar with high pre-
cision. It was observed that some subjects could fully control
the avatar while the rest had difficulty using a certain mental
command (left Motor Imagery). Nevertheless the results are
very promising for future research on BCI game development.

In the future, the goal is to add one more mental command,
Motor Imagery of moving both legs for going forward, so
the movement of the in-game avatar would be entirely from
mental commands. Lastly more subjects will participate in the
experiment and different EEG devices will be used.

In this work the BCI application was based on a 3D MI
game. In the future more BCI applications will be employed
for commanding autonomous vehicle such as wheelchairs and
for controlling augmented or virtual environments.
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