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Abstract—Brain computer interface (BCI) technology repre-
sents a growing field of research with extensive applications.
This paper focuses on the use of brain signals as a direct
communication pathway to an external device. Our goal was
to implement a 2D game and control it using a commercially
available electroencephalography (EEG) device, by developing
an appropriate BCI. The proposed method consists of recording
and processing EEG data using the Muse 2 headband, in order
to control a 2D game built on Unity game engine. Five subjects
were included in the study and each of them played the game
when it was trained using EEG data from all other participants
(including themselves). Results indicate that participants tend to
achieve better scores when the BCI has been trained with their
own EEG data, however this is not applicable for all subjects.
Furthermore, longer periods of playing the game led to increased
control.

Keywords—Brain computer interface (BCI); Electroen-
cephalography (EEG); Game; Muse; OpenViBE; Unity

I. INTRODUCTION

Brain-computer interface (BCI) is a sub-class of human-
computer interaction (HCI) that requires minimum amount
of physical movement. This technology establishes a com-
munication pathway between a computing device and the
brain’s electrical activity [1]. Research on BCIs began in the
1970s and was mainly directed towards medical applications.
Nowadays BCI research is very wide including various non-
medical applications, such as gaming. Through all these years
of research, now it is possible to accurately control machines
with the power of the brain.

In general, BCIs can be divided into two categories, invasive
and non-invasive. Invasive techniques require an electrode
array positioned directly in contact with the human brain.
This category produces a high quality signal in terms of noise,
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amplitude and raw data. However, it is mainly used in severely
disabled patients because of the dangers that involves.

On the other hand, the non-invasive techniques are based
on electrodes positioned on the scalp in order to measure
the brain’s electrical potentials (EEG) or the magnetic field
(MEG). It is a safer, cheaper and faster technique and most
of research is focusing on this method. These devices have
been successful in giving a patient the ability to move muscle
implants and restore partial movement [2]. Techniques’ main
drawback is, is that the signals are distorted and contain several
artifacts. The most common non-invasive device is known
as an electroencephalograph (EEG). The electrodes can read
brain signals. Regardless of the number or location of the
electrodes, the fundamental BCI mechanism is the same, i.e.
it processes the EEG signal to identify specific patterns.

In this paper a method to build a BCI controlled game
is presented. Interaxon’s Muse 2 headband is used to collect
EEG signals from several users. OpenViBE software is used
for recording the EEG data of the players, the offline signal
processing and classification and for the real-time acquisition
and online EEG analysis and classification. Unity software
was used to develop the 2D game in which the player has to
overcome certain obstacles using the Muse 2 headband and
the BCI software.

II. RELATED WORK

Several studies, aiming to connect BCI’s with gaming,
have been published. Their main goal was, to build a game
controlled by the brain from start to finish, improving the
overall experience of the user.

Malete et al. [3] discusses the use of brain signals as a
primary communication pathway to external hardware. They
designed a game in Unity 3D where the character walks inside
a maze and collects coins to earn points while trying to solve
the maze and discover hidden treasures to score points. The
proposed method consists of recording and processing the
EEG data using the Emotiv Epoc+ headset. Support vector
machine (SVM), linear neural network (NN) and decision trees
(DT) were used for EEG features classification. The overall
system performance was promising.
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Cao and Yun [4] developed an online human-agent in-
teraction system using a BCI to control an avatar in Unity
platform. Also, the system provides the capacity to visualize
the EEG signals including the pre-processed temporal data and
the power spectrum in three frequency bands. The designed
scenario in Unity is a kart game, where the avatar requires
to complete three checkpoints within sixty seconds to finish
the game. In the testing phase, the agent used the processed
signals and managed to win the game.

Gezgez and Kaçar [5] designed a two level 2D game that
provides virtual character control with both BCI and HCI.
Emotiv Epoc + was used to translate mental commands and fa-
cial expressions into in-game character movement. The system
was trained to be able to execute two commands, ”forward”
and ”shoot”, which were assigned to the buttons M and F
respectively. Initially, the system was trained with the mental
commands ”Right” and ”Push”, corresponding to forward and
shoot for the character and then with the facial expressions
”Smile” and ”Clench”, again matching the forward and shoot
commands. The results showed that BCI is temporally delayed
compared to HCI. The average completion time for level 1 and
level 2 is 8.4 and 10.6 seconds using the HCI. When using
the BCI with mental commands the completion time increased
to 41.9 and 56.5 seconds for levels 1 and 2. Likewise, facial
expressions completion time was 39.4 and 41.4 seconds for
the two levels.

III. METHODS

The proposed method was developed using the OpenViBE
BCI software [6], which is a free and open-source platform
for designing, testing and using Brain-Computer Interfaces.
OpenViBE provides both an Acquisition Server and a Sce-
nario Designer. The Acquisition Server provides drivers for
communication between software and some BCI devices. The
users can develop their data flows in a tree view environment
with Scenario Designer . The platform consists of software
modules, “Box algorithms”, which can be integrated to create
BCI for both real and VR applications. These Boxes imple-
ment existing algorithms, which the developer can use to start
an OpenVibe scenario.

A. Offline Processing and Classification

1) Acquiring EEG Data: In this paper, the Muse 2 head-
band, which is an accessible EEG device, was used for data
acquisition. It is a commercial EEG headband that connects
to a computer via (Bluetooth). It is lightweight, flexible and
easily worn. Muse 2 uses four EEG electrodes, two on the
left, two on the right and a ground electrode as it is shown
in fig. 1. OpenViBE acquisition server is used for acquiring
the EEG data. The Muse 2 is not in the list of the default
headsets that OpenViBE can connect to so a lab streaming
layer [7] (lsl) stream was created through BlueMuse [8]. Then
the ”Acquisition client” box is used and the raw data are being
saved in CSV files.

Fig. 1. Muse 2 electrodes on 10-20 electrode positioning system.

2) Input Signal: To import the training signals the “CSV
file reader” box is used. Features extracted from the pre-
recorded EEG signals were used as a training dataset. In the
current scenario two different EEG signals should be imported
(one for each class). The time of the off-line phase is equal to
the duration of the entire EEG input signal plus the execution
time of the classification algorithm.

3) Time Epoching: Time epoching is a frequently used
method in EEG analysis. Epoching is a procedure in which
specific time-windows are extracted from the continuous
EEG signal. The proposed approach employs a “Time Based
Epoching” box, where each epoch last for 2 seconds, while
the epoch interval offset is 1 second.

4) Signal Processing and Feature Extraction: After import-
ing the raw data from the EEG recordings a temporal filter
is applied to reduce the artifacts. The ”Temporal filter” box
applies a Band Pass filter between 8-40 Hz. Then spectral
features are extracted. In this scenario ”Spectral Analysis”
box is used which is the Fast Fourier Transform. Then the
”Frequency Band Selector” is used which splits the EEG
spectrum into three bands: 1) Alpha waves 8-13 Hz 2) Beta
waves 13-30 Hz and 3) Gamma waves 30-40 Hz. Finally, the
average spectral amplitude per band is calculated and then
used as input to “Feature Aggregator” Box.

5) Classification: For the classification, the linear discrim-
inant analysis (LDA) algorithm is used [9]. The results of the
trained classifier are stored in an XML file to be used in the
real time training. Training Scenario is presented in detail in
Fig.2.

B. Real Time Classification

After the off-line processing and classification have been
completed, the real-time testing can start via the Acquisition
Server. All the boxes except, the ”Time based epoching” box,
that have been used in the training scenario are used again
but in this case only one time is enough. Fig. 3 illustrates
the Testing Scenario, where the results of the classifier are
exported through the ”LSL Export” box as a Markers stream.

IV. GAME DESIGN

In order to build the game used in this study, Unity game
engine was employed. Unity is a popular cross-platform game-
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Fig. 2. OpenViBE training scenario for the EEG processing and classification (offline).

Fig. 3. OpenViBE real time EEG processing and classification scenario.

developing engine, developed by Unity Technologies Com-
pany, and is widely used in 2D and 3D game developing[10].
The engine can be combined with the BCI software in order
to produce BCI controlled games that replace standard control
options with EEG signals.

The developed game is a 2D game (a snapshot is presented
in Fig. 4). The game consists of a platform on which there
is a character that the player must move. The objective of
the game is to reach the end of the path by bypassing the

obstacles. Obstacles are ”ghost” and ”monster” characters. At
the top right of the screen is the score, which increases as the
player progresses.

A. Game scenario

For this paper, the ordinary movement commands usually
given via the keyboard are replaced with brain commands. The
installation of the lab streaming layer library (LSL) allows
the application to obtain data from a live stream (Muse 2
Headband in our study). More specifically, the stream outlet
component from the LSL library is used, which enables data
streams of time series on the lab network. The data is pushed
sample-by-sample into the outlet (our game). The samples
received from the stream are divided into two categories
depending on the command given by the user.

Fig. 4. A snap of the 2D game.
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• If the user looks ahead then the sample goes to the first
category and the in-game character moves forward.

• if the user blinks, the sample goes to the second category
and the in-game character jumps.

V. RESULTS AND DISCUSSION

1) Training Dataset: Five subjects, three males and two
females, participated in the experiment. All subjects were
healthy with normal or corrected to normal vision. They
were instructed to sit comfortably in a chair, in an upright
position, while trying to hold still as much as possible, and
performed two separate recordings. During the first recording,
the subjects were instructed to look at the center of the
computer screen and think that they move forward and in the
second they were instructed to blink every one second. Both
of the recordings lasted for eight minutes.

All recorded data from every subject were included in the
offline processing and the classifier input consist of 1350
feature vectors (450 for each class). The average classification
accuracy is 96.8%, ranging from 89.8% to 99.8%.

2) Online Testing: All the subjects had zero experience in a
brain computer interface and in the Unity engine environment.
An experienced researcher informed the participants about the
procedure and all the subjects got familiar with the device and
the protocol before the beginning of the experimental process.
After the offline training the subjects started to test the game.
In the beginning they had five tries to play in order to get
familiar with the unity and game environment. Then, every
time they played a score was kept in order to rate the online
procedure. The protocol of this online testing was that each
subject should play twenty times with the classifier that was
trained with their own data and with the classifiers that were
trained with the other players data (twenty for each classifier
and eighty in total). The average scores are shown in Table I
(rows corresponding to the players and columns to the data).

TABLE I. INTRA-USER BCI-CONTROLLED GAME RESULTS

Subject1 Subject2 Subject3 Subject4 Subject5
Subject1 28.30 21.40 16.65 22.30 29.70
Subject2 47 66.40 47.20 54.45 41.45
Subject3 37.60 23.05 44.80 19 25.95
Subject4 28.45 42.65 32.15 25.65 16.20
Subject5 46.25 29.20 52.10 55.70 34.70

TABLE II. COMPARISON OF AVERAGED SCORES

Subjects Data All Others Data All Subjects Data
Subject1 28.30 22.51 23.67
Subject2 66.40 47.52 51.30
Subject3 44.80 26.40 30.08
Subject4 25.65 29.86 29.02
Subject5 34.70 45.81 43.59

Table II shows the average score of every subject with their
own EEG data (”Subjects Data” column), with the EEG data
of the other participants (”All Others Data” column) and with
all the data that have been recorded for the experiment (”All
Data” column).

After playing the game a few times, the participants gradu-
ally adapted and achieved better scores. It should be noted that
the subjects had to play the game for 40 or more times until
they managed to finish it successfully at least once. Subjects 1,
2 and 3 had overall better performance and finished the game
with their own EEG data, while subjects 4 and 5 managed to
score higher in a classifier that had been trained with someone
else’s data. The average game results for all subjects when
playing the game trained with their own EEG data is 39.97,
while respective results when playing the game trained with
all other EEG data (except the current user) is 34.42.

Comparative study with other BCI controlled games pre-
sented in the literature is shown in Table III.

TABLE III. COMPARISON OF BCI CONTROLLED GAMES

Authors Subj Repetition
per Subj Results

Malete et al. [3] 11 - Classification results:
49% - 56%

Cao & Yun [4] 1 - -

Gezgez & Kaçar [5] 1 8 Game score results:
Game finished in 25 sec

This work 5 100

Classification results:
89.8% - 99.8%

Game score results:
39.97 with own EEG data
34.42 with other EEG data

The works from Malete et al. [3] and Cao & Yun [4] mainly
focused on the EEG classification and did not present any
results for the BCI controlled game. Cao & Yun [4] used a
convolutional neural network (CNN) to build the classification
model while Malete et al. [3] tested several classification
algorithms. Gezgez & Kaçar [5] used three classification
algorithms, and a time-based score was employed to evaluate
the game, which measured the time until the player finished the
game. In this work, both classification and game score results
are measured and the intra-user correlation while playing the
BCI controlled game is evaluated.

VI. CONCLUSION AND FUTURE WORK

In this paper a BCI controlled game was developed and used
to evaluate the intra-user variability in terms of game score.
OpenViBE platform was used to develop the BCI while Unity
game engine was employed for the creation of the game. The
Muse 2 headband was used to record the raw EEG data and
LSL was used to connect the data to the BCI.

Five subjects participated in the experiment, each one
playing the game when it was trained with their own EEG
data and with the EEG data from each other participant. The
obtained results indicate that the results were significantly
higher (on average) when playing the game trained with their
own EEG data, however 2 participants achieved higher scores
when playing the game trained with other user’s EEG data.

In the future, more levels will be created with increased
difficulty and more characters will be added for the players
to choose. Additionally the goal is to increase the number
of commands from two to four, so the character can move
backwards and crouch. Another important addition will be
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the overall BCI game control, including all initial manual
selections in order to enhance the BCI experience.

In this study the BCI application was based on a simple
game. Further studies will include the application of BCI
in different research areas such as interaction with various
software applications, control of virtual or augmented environ-
ments and wheelchair or other autonomous vehicle navigation.
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