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Abstract—The field of Brain-Computer Interface (BCI) is
expanding quickly and has numerous applications in various
areas including medical, gaming, and everyday living. This paper
presents a BCI-controlled wheelchair with Motor Imagery (MI)
mental commands for turning right and left. The Degree of
Freedom is 4; going forward, stopping, turning left and right.
To record the raw EEG data Muse S headband is employed and
to classify the mental commands Linear Discriminant Analysis
(LDA) algorithm is used. 6 subjects trained extensively and tested
the proposed BCI system in 2 experiments for 100 repetitions
each. The experiments are conducted in an office environment
and the results demonstrated that the participants are able to
successfully adapt and operate the BCI-controlled wheelchair
with a high level of accuracy and precision.

Keywords—Brain Computer Interface (BCI); Electroen-
cephalography (EEG); Motor Imagery (MI); Muse S; BCI-
controlled wheelchair;

I. INTRODUCTION

Brain-computer interface (BCI) technology has emerged as
a promising field of research in recent years. BCI systems
allow for direct communication between the human brain and a
computer or external device, providing a means for individuals
to control technology using their thoughts. The potential ben-
efits of BCI systems include improved communication, mobil-
ity, and independence for individuals with physical disabilities.
However, significant challenges remain in the development of
these systems, including the need for robust signal processing
techniques, the limited accuracy and reliability of current BCI
systems, and the ethical considerations surrounding the use of
invasive techniques [1][2].

One widely used method for recording brain activity in BCI
systems is electroencephalography (EEG) [3]. EEG signals
can be recorded non-invasively [4] using electrodes placed
on the scalp, making it a relatively safe and cost-effective
option compared to invasive techniques [5] such as implanting
electrodes directly into the brain. However, non-invasive EEG
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signals are often weaker and more susceptible to noise, making
it challenging to extract meaningful information.

One trend in BCI research is developing more advanced sig-
nal processing techniques and machine learning algorithms to
analyze EEG signals. This results in more accurate and reliable
feature extraction from brain signals and improves the overall
accuracy of the BCI systems. Another trend in the literature
is implementing new applications; using BCI technology for
cognitive training, rehabilitation, and mental health treatment
[6][7]. These applications have the potential to greatly improve
human performance and quality of life. Moreover, a trend with
a lot of focus in the literature is the development of more
accessible, affordable, and user-friendly BCI systems in order
to increase the adoption of BCI technology for a wider range
of users. As the field of BCI research continues to evolve, it is
expected that new applications and trends will emerge, leading
to further advancements [3][8].

One very promising BCI application is the development
of BCI-controlled wheelchairs [9][10]. This can greatly help
and benefit people with physical disabilities and the whole of
society. BCI-controlled wheelchairs offer greater independence
and autonomy for people with limited mobility; those with
spinal cord injuries, cerebral palsy, or amyotrophic lateral
sclerosis (ALS). In terms of autonomy for individuals with
disabilities, these BCI systems can reduce the need for physical
assistance from caregivers, which will result in greater privacy
and higher quality of life. By allowing individuals to control
their wheelchairs using their brain signals, these systems can
provide a greater level of mobility and freedom that may
not have been possible with traditional wheelchair control
methods.

A common strategy for applications like BCI-controlled
wheelchairs is Motor Imagery (MI). MI [11][12] includes
imagining the movement of a body part, hands, and/or foot,
without actually moving the body. Most studies in the liter-
ature, employ hand-movement imagination for manipulating
BCI systems. Imagining the movement of a body part gener-
ates specific patterns in the brain which can be detected and
translated into commands for controlling external devices and
applications [13]. In the case of BCI-controlled wheelchairs,
users can imagine specific movements, such as moving or lift-
ing their left or right hand, in order to direct the wheelchair to
turn in the desired direction. Motor imagery-based BCIs have
shown great promise for individuals with physical disabilities,



as they provide a means for controlling external devices that do
not rely on physical movements or the use of assistive devices.
Lastly, MI-based BCIs can be non-invasive and relatively easy
to use, making them an appealing choice for a wide range of
users.

In this paper, a BCI-controlled wheelchair is developed
that employs left and right Motor Imagery commands and
Electrooculogram (EOG) signals. The goal of this work is
to evaluate a BCI wheelchair for in-office movement after a
long training period. 6 subjects participated in 2 experiments,
Start/Stop and Start/Stop/Turn, and had 10 sessions for each
experiment with 5 trials per session in order to learn how to
accurately command the wheelchair. To acquire the EEG data,
the Muse S headband is used.

II. RELATED WORK

Several studies have been published in the last decade that
aim to develop BCI-controlled wheelchairs. For the selection
of the papers in this section, several criteria should be satisfied.
The most important one is the usage of a wireless EEG device
and the real-time commanding of the wheelchair. Then the
more recent works are presented. In the following papers MI,
Attention-Mediation levels, and hybrid systems utilizing EEG
and Electroocoulogram (EOG) are included.

Rotier et al. [14] developed a brain-controlled wheelchair.
To acquire the raw EEG data Emotiv Epoc headset was
employed with 14 EEG channels. To process the data they used
the Emotiv software, EmoEngine. The BCI system comprises
an EEG headset, a computer, Arduino Uno and a wheelchair.
The computer connects with Emotiv Epoch to record the data
then it sends the processed data to Arduino and Arduino
sends commands to the wheelchair. The available commands
for this work were going forward, stopping, turning left and
right. Three subjects participated in the experiments to evalu-
ate the brain-controlled wheelchair. As the evaluation metric
they employed a time metric; time to finish the experiment.
Overall, this work offers promising results for BCI wheelchair
development.

Espiritu et al. [15] employed a BCI-controlled wheelchair
converting the standard joystick control with EEG data. Emo-
tiv Insight, a 5-channel EEG device, was used to record the raw
EEG data and Emotiv software was used for processing and
training. The Degree of Freedom (DoF) of this BCI system is
five; moving forward and backward, stopping, turning left and
right. The overall system used the EEG device, a computer
to connect the headset via Bluetooth, Arduino Uno to send
the commands to the wheelchair and the wheelchair. One
subject who trained extensively participated in the experiment.
The training phase included training for 4 mental commands;
push, pull, left MI and right MI. The neutral mental state
was the command used for stopping, push was for forward
movement, pull was for backward movement and left/right MI
was for turning. To send the mental commands to the Arduino
Uno another Emotiv software was employed, Emotiv Xavier
EmoKey, which binds the commands with keyboard keys. To

evaluate this work a command response delay for action metric
was employed for every movement.

Chawda et al. [16] designed a hybrid EEG- EOG controlled
wheelchair that uses brain signals and eye blinks. The device
used to acquire the data was Neurosky Mindwave Mobile 2
with a single electrode. Raspberry 3B+ was employed to con-
nect the headset to the wheelchair and to process the data. The
available movements for the BCI-controlled wheelchair were
moving forward, stopping, turning left and right. For forward
movement, the attention level of the user was calculated and
if it was greater than a certain threshold the wheelchair moved
forward. Subjects had to calm down for stopping. To turn
right the users had to perform one intentional eye blink and to
turn left they had to perform two consecutive eye blinks. To
ensure the safety of the proposed system, an obstacle detection
system was employed with ultrasonic sensors. For finding the
optimum Attention threshold 8 subjects were tested by varying
the threshold. Lastly, to evaluate the hybrid BCI wheelchair an
experiment was conducted in an indoor environment with four
subjects. The results indicate that the system had greater ac-
curacy for forward and stopping commands than the accuracy
for turning left and right while the worst accuracy obtained
was for turning left.

AlAbboudi et al. [17] developed a BCI-controlled prototype
miniature wheelchair. Emotiv Epoc was employed with 14
channels to obtain the raw EEG data. The proposed concept
utilized five commands/movements which were moving to the
right, to the left, forward, backward, and stopping. Discrete
Wavelet Transform (DWT) was used for feature extraction.
Then the processed signal was fed to a classifier. To choose
the best possible classifier, four different classifiers were
tested; Support Vector Machines (SVM), K-Nearest Neighbors
(KNN), Random Forest and Artificial Neural Network (ANN)
and the best-performing was SVM. To connect the whole
BCI system they used the EEG headset for data collection,
a computer for connecting the headset with the software, an
Arduino Uno to transmit commands to the prototype, and
the miniature wheelchair. To evaluate the system, one subject
trained and performed the 5 mental commands for 20 trials.
The accuracy of each command was used as an evaluation
metric of the experiment.

III. METHODS

The proposed work aims to design a low-cost BCI-
controlled electric wheelchair for people with disabilities.
The system comprises a commercial EEG headset; Muse S,
a computer and a wheelchair (figure 1). The hardware and
software used in this work are discussed in the following
subsections.

1) Muse S: The Muse S EEG headband is a wearable
device that measures brain activity using EEG technology. It
is designed to be user-friendly and easy to use and it is also
relatively affordable compared to traditional EEG equipment
or other commercial EEG headsets. The device connects to
the computer via Bluetooth and transmits raw data from 4
EEG electrodes. The electrodes are located in the frontal



Fig. 1. System Overview. The Muse S connects with the computer via
Bluetooth and the computer connects with the wheelchair via USB.

and temporal lobes; AF7 and AF8, TP9, and TP10. Muse
S has also Pulse Oximetry, Accelerometer, and Gyroscope.
The device is employed for this work because of its ability to
remain securely affixed to the user’s head, ensuring reliable
and uninterrupted measurement of brain activity throughout
the duration of the experiments, low price, compact size and
wireless features. The sampling frequency of Muse S is 256Hz.

2) BlueMuse and Lab Streaming Layer: BlueMuse is a
broadcasting software that connects Muse S headband with
the computer via Bluetooth. It has many functions that make it
simpler for the user, such as automatic detection of accessible
EEG headsets within Bluetooth’s range. BlueMuse streams the
raw data through Lab Streaming Layer Protocol (LSL). LSL
is an open-source system for streaming, receiving, synchro-
nizing, and recording time series data feeds obtained from
a variety of network acquisition devices. It offers safe data
transmission; TCP protocol and it can simplify cross-platform
connectivity.

3) Offline Processing: Raw EEG signals are recorded and
stored in CSV files to process, extract features and train
the classifier. Every subject is recorded for three separate
mental states; left and right MI and raising their eyebrows
for 5 minutes for each command. When the recordings are
completed, the signals are pre-processed by applying a 4th-
order bandpass filter between 9Hz to 40Hz. This filter reduces
the artifacts of the raw EEG signals and excludes the frequency
bands (Delta and Theta) that are not relevant to this work. Then
the signal is split into 5 frequency bands; 1) Alpha Frequency
Band 9Hz-13Hz, 2) Low Beta Frequency Band 13Hz-20Hz,
3) High Beta Frequency Band 20Hz-30Hz, 4) Low Gamma
Frequency Band 30Hz-35Hz, 5) High Gamma Frequency Band
35Hz-40Hz.

The filtered signals are epoched in 3 seconds segments. The
window size has been selected to be short enough for the
system to quickly respond to the user’s mental commands, but
also long enough to include a sufficient amount of information
for the classification process to be accurate. This trade-off has
been studied with several trial-and-error experiments. Then

the normalized energy of the signals is calculated for every
frequency band and for every channel. These features are fed
to the classifier for training.

4) Classification: To classify the data Linear Discriminant
Analysis (LDA) algorithm is used. LDA [18][19] is a well-
established and widely used classification algorithm in ma-
chine learning. It is a supervised learning technique that is
used for classifying objects into two or more groups based on
a set of features. The main goal of LDA is to find a linear
combination of features that maximally separates the classes,
while also minimizing the within-class variance. In a three-
class classification problem, LDA can be used to find the best-
separating hyperplane that maximizes the distance between the
three classes, while also minimizing the overlap between them.
This is achieved by first estimating the mean and covariance
matrix of each class, and then computing a set of discriminant
functions that can be used to classify new objects.

Table I presents the classification accuracy of the 3 mental
commands for 6 subjects that participated in the experiments.
The average accuracy for Right MI is 91.2% ranging from
85.3% to 97.5%, for Left MI is 91.1% ranging from 96.9%
to 81.4% and for raising the eyebrows is 99.8% ranging from
100% to 99.3%.

TABLE I. CLASSIFICATION TRAINING ACCURACY FOR THE 3 MENTAL
COMMANDS, LEFT/RIGHT MI AND RAISING THE EYEBROWS.

Subjects Right MI Left MI Raising Eyebrows
1 90.2% 92.6% 100%
2 97.5% 96.9% 100%
3 85.4% 90.2% 100%
4 97.0% 81.4% 99.3%
5 85.3% 90.2% 100%
6 92.3% 95.4% 100%

5) Real-Time Processing and Classification: When the
offline processing and classification are completed the BCI
system is ready to be used in real-time. The same processing
techniques are applied in the real-time testing and then the
features are fed to the trained LDA classifier to predict among
the 3 classes. Then the prediction of the classifier is sent to a
second Python script that communicates with the wheelchair.
Depending on the predicted mental command the script sends
the corresponding command to the wheelchair via USB and
the wheelchair moves. Left/Right MI is for turning and raising
the eyebrows is for stopping and moving forwards. When
all the components are connected and a subject starts the
experiment the wheelchair moves forward by default. If the
classifier predicts the raise of the eyebrows then the wheelchair
stops. When the BCI system is in stop mode the user can turn
left or right or move forward. Turning is disabled when the
wheelchair moves forward for safety reasons. So if the user
wants to turn he has to stop the movement, perform the MI
mental command and then raise his eyebrows to start moving
to the desired destination.

IV. RESULTS

To evaluate the proposed BCI-controlled system 6 subjects,
3 males and 3 females with 26.33 average age ranging from



24 to 35, participated in 2 experiments. All subjects had
good vision and they are mentally and physically healthy. All
subjects signed a consent form to be able to participate in the
experiments. Firstly, they are introduced to the equipment and
the concept/goal of the proposed work. Then, they sat in a
quiet room with no other people in a comfortable position in
order to be recorded for the 3 mental commands for 5 minutes
each. The whole recording phase lasted 30 minutes for each
user, 15 minutes of recording, and 15 minutes of break. After
that, they are introduced to the wheelchair and had 20 minutes
to learn how to command it and to get familiar with the speed
of the system.

1) Start-Stop: The first experiment is about starting and
stopping. Participants tested for 50 tries in order to evaluate
their adaptation and asses if they could improve their per-
formance. Basically, they had to stop the wheelchair 2 times
in predetermined positions (Figure 2). 3 evaluation metrics are
employed for this experiment; distance from the predetermined
stop position for stop 1 and stop 2 and number of stops for
each trial. The average results of the subjects are presented
in Table II. The first experiment is divided into 10 sessions
of 5 trials. Every session is conducted on a different day at
approximately the same time as the first one for every user.

Table II shows the average results for 10 sessions for each
subject. The best-performing subject is 4 with average results
of 3cm for the first stop, 2.7cm for the second while he didn’t
make more than 2 stops in his 50 trials. The worst performing
subject is 2 and 5 with average results of 7cm and 7.25cm
for the first stop, 8.36cm, and 9.32cm for the second. All of
the participants adapted to the BCI system and managed to
perform stopping and move forward successfully. The average
results for all subjects are; 5.46cm for the first stop, 5.81cm
for the second and 2.23 for the number of stops. After the
first 5 sessions, they all got very comfortable commanding
the BCI-controlled wheelchair. After this extensive testing,
all participants could start and stop the movement of the
wheelchair with ease.

2) Start-Stop-Turn: The second experiment is conducted
to test the ability of the BCI wheelchair to perform right
turns. Subjects have to perform 4 right turns in order to reach
the predefined destination (Figure 3). The evaluation metrics
employed in this experiment are the number of commands to
reach the destination, wrong turns and the number of stops. To
reach the predefined destination from the starting position the
minimum number of commands is 9; 4 turns, 3 stops and 2
forwards. Participants tested for 50 tries each. This experiment
is also divided into 10 sessions of 5 trials. Table III presents
the average results of the second experiment for every subject.

Table III shows the average results for 10 sessions perform-
ing right turns with MI mental commands. The number of
commands is employed to present how many mental com-
mands the participants performed to reach the final destination,
the number of stops is used to test the ability of the user
to stop the wheelchair only when they are asked to and the
wrong turns are employed to test the accuracy of the right MI

TABLE II. AVERAGE RESULTS FOR THE FIRST EXPERIMENT

Subs Sessions Stop 1 Stop 2 # of stops

1

1 14cm 7.8cm 2.4
2 3.2cm 4.8cm 2.2
3 4.8cm 7cm 2
4 5.4cm 7.2cm 2
5 3.6cm 5cm 2
6 2.8cm 0.6cm 2.2
7 0.6cm 3.6cm 2.2
8 2.2cm 1.6cm 2
9 2.4cm 0.4cm 2
10 1.8cm 1.4cm 2

2

1 14.8cm 24.8cm 2.8
2 4.2cm 12cm 2.8
3 10.8cm 11.4cm 2.4
4 11cm 6.2cm 2.4
5 2cm 5.8cm 2.6
6 7cm 5cm 2.6
7 4.8cm 6.2cm 2.2
8 5.6cm 5cm 2.2
9 6cm 5.2cm 2.2
10 3.8cm 2cm 2

3

1 14cm 13.4cm 4.4
2 8.4cm 14cm 2.6
3 6.8cm 9.6cm 2.4
4 5.4cm 4.4cm 2.2
5 5cm 4.4cm 2
6 5.8cm 3.8cm 2.3
7 2.8cm 1.6cm 2
8 3.6cm 1.2cm 2
9 2.2cm 3.2cm 2
10 2.6cm 2cm 2

4

1 7.4cm 6.8cm 2
2 5.6cm 6cm 2
3 3.6cm 1.4cm 2
4 5.2cm 2.6cm 2
5 0.4cm 1.6cm 2
6 3cm 3cm 2
7 2.8cm 2cm 2
8 1cm 0.6cm 2
9 0.6cm 1cm 2
10 0.4cm 2cm 2

5

1 10.6cm 7cm 2
2 5cm 7.6cm 2
3 12.4cm 10.4cm 2
4 6.2cm 14cm 2
5 6.4cm 8.6cm 2.2
6 10cm 7.4cm 2.2
7 9.2cm 10.2cm 2
8 7.6cm 8.4cm 2
9 2.8cm 12.4cm 2
10 2.2cm 7.2cm 2

6

1 13.8cm 5.8cm 2.4
2 5.6cm 8.8cm 4.2
3 8cm 6.8cm 2.6
4 6.6cm 4.4cm 2.4
5 7cm 5.4cm 2.4
6 3.8cm 5.2cm 2
7 4.6cm 1.6cm 2.2
8 2.2cm 5cm 2.2
9 3.4cm 2.6cm 2
10 3.2cm 2.4cm 2

commands. The average results for all subjects are; 11.42 for
the number of commands, 3.33 for the number of stops and
0.93 for the wrong turns. The best-performing subject is 1
with average results of; 10.64, 3.08 and 0.68. The participant
who had the most difficulty in performing the predefined
movements is subject 6 with average results of; 12.04, 3.44



Fig. 2. Experiment 1 set up. Sub-
jects had to stop the wheelchair in
the 2 predetermined stop positions
in order to evaluate the ability of the
BCI-controlled wheelchair to stop
with precision. The two designated
stopping points are demarcated by
distinct X-shaped markings on the
floor.

Fig. 3. Experiment 2 set up. The
subjects were required to perform a
series of right turns, stops, and for-
ward movements to reach the final
position, as per the experimental in-
structions. The X-shaped markings
on the floor demarcate the desig-
nated stopping positions for execut-
ing the right turns.

and 1.42. All of the participants managed to complete a trial
with the minimum number of commands (9). For both the
Experiments longer time of commanding the BCI-controlled
wheelchair led to greater comfort, better adaptation and results.

Table IV presents the number of forced stops subjects
performed because they lost control of the wheelchair.

The average forced stops for Experiment 1 is 3, and Subject
4 made the fewest (2 stops). For the second experiment,
the average number of forced stops is 3.5, and Subject 1
performed the fewest (2 stops). Forced stops are a safety
measure and subjects are instructed to perform them when they
feel uncomfortable or when the classifier could not identify a
specific mental command and an obstacle was close to the
wheelchair’s path. In both Experiments, in 100 repetitions per
subject, the average forced stops are 6.5. Subject 1 had to
stop the wheelchair only 5 times while Subject 6 had to stop
8 times.

V. DISCUSSION

A comparison study of other published papers from the
literature and this work is presented in Table V. All of the
discussed works used wireless commercial EEG devices to
command BCI-controlled wheelchairs or prototypes.

Rotier et al. [14] designed a BCI-controlled wheelchair and
tested it with 3 subjects. Emoviv Epoc was used for recording
the EEG data and Emovitv software was used for processing
and classifying the mental commands. The DoF of their system
is 4 and the time to finish the experiment was their evalua-
tion metric. Espiritu et al. [15] developed a BCI-controlled
wheelchair with 5 available movements/commands. Emotiv
Insight was employed to acquire the raw EEG signals and 1
subject tested the system for 30 trials. Command Response
Delay for Action was employed as the evaluation metric.

TABLE III. AVERAGE RESULTS FOR THE SECOND EXPERIMENT

Subs Sessions # of Commands # of Stops # of Wrong Turns

1

1 15.6 3.2 2.8
2 11.4 3.2 1.2
3 11.6 3 1.4
4 10.4 3 0.4
5 9.6 3.2 0.4
6 9.8 3.2 0.2
7 9.6 3 0.2
8 9.6 3 0
9 9.8 3 0.2

10 9 3 0

2

1 12.8 3.8 1.8
2 13.8 4.2 2
3 11.2 3.8 1.2
4 10.8 3.8 0.8
5 10.6 3.6 0.4
6 10.8 3.8 0.2
7 9.2 3.2 0
8 9.4 3.2 0.2
9 10.2 3.4 0.2

10 10 3.2 0.2

3

1 14.6 3.4 2.2
2 15.4 3.4 2.8
3 13.4 3 1.8
4 12.2 3.4 0.6
5 11 3 1
6 10.6 3 0.8
7 10.2 3 0.6
8 10 3.2 0.4
9 10.2 3.2 0.6

10 9.4 3 0.2

4

1 18 3.4 3
2 11.4 3.6 0.4
3 12.6 3.2 1.4
4 12.2 3.6 1.2
5 11.2 3.2 0.4
6 10.2 3.4 0
7 9.6 3 0.4
8 10 3.2 0.6
9 9 3 0

10 9.8 3.2 0.4

5

1 15.8 3.8 2.6
2 16 4.2 2.8
3 13.2 4 1.2
4 10.8 3.6 0.2
5 11 3 1
6 10.4 3 0.4
7 11 3.8 0.2
8 10.2 3 0.2
9 10 3 0

10 10.2 3 0.8

6

1 16.4 3.4 3
2 13.8 4 2.2
3 12.8 3.4 1.4
4 11.2 3.8 1.2
5 11 3.2 1.6
6 11.6 3.4 1.6
7 10.4 3 0.4
8 11.4 3.6 1.6
9 10.8 3.2 0.6

10 11 3.4 0.6

Chawda et al. [16] used Neurosky Mindwave Mobile 2 headset
to command a BCI-controlled wheelchair with 4 available
movements. 4 subjects participated in the experiments for 25
tries each and the Accuracy of the system was the evaluation
metric. AlAbboudi et al. [17] designed a wheelchair prototype
commanded by a BCI system with Emovitv Epoc headset. The



TABLE IV. THE TABLE PRESENTS HOW MANY TIMES SUBJECTS
HARD-STOPPED THE WHEELCHAIR BECAUSE THEY LOST CONTROL IN

EXPERIMENT 1 AND EXPERIMENT 2.

Subjects Experiment 1 Experiment 2
1 3 2
2 3 4
3 3 3
4 2 4
5 3 4
6 4 4

TABLE V. COMPARATIVE STUDY

Authors Device / Wheelchair Subj
Repetition

per Subj
Results

Rotier et al. [14]
Emotiv Epoc

Real Wheelchair
3 - Time to finish the experiments

Espiritu et al. [15]
Emotiv Insight

Real Wheelchair
1 30 Command Response Delay for Action

Chawda et al. [16]
Neurosky Mindwave Mobile

Real Wheelchair
4 25 BCI Wheelchair Accuracy

AlAbboudi et al. [17]
Emotiv Epoc

Miniature Wheelchair
1 20 BCI Wheelchair Accuracy

This work
Muse S

Real Wheelchair
6 100

Classification results

Start-Stop results

Start-Stop-Right turn results

Forced Stops

DoF of this work was 5. 1 subject tested the BCI prototype
20 times and the Accuracy of the system was evaluated. In
this work, a BCI-controlled wheelchair is developed with 4
available movements. Muse S headband is used to record the
brain signals from 6 subjects that participated in 2 experiments.
The subjects tested the proposed system 100 times each, to
evaluate the safety and functionality of the system. To evaluate
the experiments 4 metrics are employed; Classification results,
Experiment 1 (Start-Stop) results, Experiment 2 (Start-Stop-
Right turn) results, and Forced Stops. This is a more thorough
work since it is tested by more subjects (6) while the average
is 2.25 participants, ranging from 1 to 4 and the average
repetitions per subject are 25 while for this proposed work
subjects performed 100 repetitions. In addition, to ensure a
more robust assessment of the BCI system, more evaluation
metrics are employed in this work. These metrics serve to
provide a more comprehensive evaluation of the system’s
performance and increase the reliability of the results.

VI. CONCLUSION AND FUTURE WORKS

In this work, a BCI-controlled wheelchair is designed.
The available movements are 4; moving forward, stopping,
turning left and right. In order to turn left or right users
need to perform the corresponding MI mental command. To
acquire the EEG data, the Muse S headband is employed that
connects with a computer via Bluetooth and the computer
sends the commands to the wheelchair via USB and serial port
communication. To classify the brain signals LDA algorithm
is utilized for a 3-class classification task. 6 subjects partici-
pated in 2 experiments; the first is stopping and starting the
wheelchair and the second is combining starting and stopping
with turning right.

Subjects trained extensively, commanding the BCI-
controlled wheelchair for 100 trials. The results are promising

and show that participants adapted to the proposed system and
managed to manipulate it with great precision. After getting
familiar with the BCI wheelchair subjects felt very safe and
comfortable commanding it.

In the future, the goal is to extend the BCI-controlled
wheelchair, with backward movement and an obstacle detec-
tion system for safety. Furthermore, more subjects will test the
system in order to have more reliable results. Also, different
commercial EEG headsets will be used to design the best
possible BCI smart wheelchair.
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