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Abstract—The recent advances of Brain Computer Interfaces 
(BCI) systems, can provide effective assistance for real time 
prognosis systems for patients who suffered from epileptic 
seizures. This paper presents an EEG classification strategy for 
short-term epilepsy prognosis, using software for Brain-
Computer Interface (BCI) systems. A training scenario is 
presented, where significant features are extracted and a 
classification algorithm is trained. The training procedure 
extracts knowledge in terms of a classification model, which is 
employed in a real-time testing. For the training of the 
classification scenario a five-classes dataset of EEG signals is 
employed in which two-classes have been recorded 
extracranially and the rest three intracranially including one 
class with epileptic seizure activity and two classes with 
seizure-free signals. Promising quantitative results are 
reported.   

Keywords-component; EEG classification; Brain Computer 
Interface systems; BCIs; Epilepsy diagnosis; 

I.  INTRODUCTION 
Epilepsy is a chronic neurological disorder of the human 

brain that affects people of all ages and worldwide [1,2]. It is 
characterized by recurrent seizures, which are brief episodes 
of involuntary movement that may involve a part of the body 
(partial) or the entire body (generalized), and are sometimes 
accompanied by loss of consciousness [1-6]. These seizures 
are recorded and analyzed using the electroencephalogram 
(EEG) which measures the brain electrical activity. 
Currently, such analysis is mainly done through long-term 
monitoring by expert neurologists and is very time-
consuming, subjective and require considerable skills [1-6]. 
Thus, computer-aided analysis has a tremendous potential in 

practice since the automation can shorten this time-
consuming process by identifying and extracting EEG 
periods of particular interest to expert neurologists [1,2].  

Computer-aided analysis of EEG signals is a developing 
field that has gained much attention in past years [1,2]. It 
usually includes a three-step algorithm which includes: a 
feature extraction stage, a feature reduction or selection 
stage, and a feature classification stage [1,3-12]. In addition, 
recent advances of the hardware and software 
communications EEG systems that permits cerebral activity 
alone to control computers or external devices known as 
brain-computer interface (BCI) systems, enable more diverse 
research [13]. The BCI field quickly identified the necessity 
for computer-aided systems that makes BCI more user-
friendly, real-time, easy to use and appropriate for people 
that are not able to use them [13]. 

In case of epilepsy, a BCI system that relies on the above 
algorithm schema can help an expert neurologist by 
highlighting the epileptic patterns in the EEG recordings up 
to a significant level [13]. Obviously, the task of diagnosis 
should be left to the expert. However, this becomes 
effectiveness as it decreases the amount of data to be 
analyzed and reduces the workload. Along with 
classification stage, BCI systems can also provide 
simultaneous visualization of multiple channels, which aids 
the expert neurologist in discriminating between generalized 
and partial epileptic seizure activities. In addition, real-time 
detection of epileptic seizure activities is crucial and can 
assist on improving the patients' quality of life. Accurate 
assessment, pre-surgery evaluations, epileptic seizure 
prognosis, and emergency alerts for clinical help, all rely on 
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the quick and accurate detection of the onset of epileptic 
seizures [13]. 

There is a crucial need to develop new approaches using 
advanced technologies in order to assist in the processing of 
EEG data and apply computer-aided analysis for real-time 
EEG classification and short-term epilepsy prognosis. Thus, 
this study is an effort to explore such progresses, having a 
novel, free, and open source BCI tool to experiment with a 
well-known public available EEG dataset [14]. The rest of 
this paper is organized as follows: in Section II the proposed 
EEG classification approach using the open source BCI tool 
is outlined in detail. In Section II the results from the 
application of this approach on a benchmark EEG dataset is 
presented. Finally, in Section IV a discussion is made about 
future extensions of this approach. 

II. METHODS 
The proposed approach is developed using the 

OpenViBE BCI software [15], which is an open-source tool 
for signal processing, focusing mostly in BCIs. OpenVibe 
provides both a Scenario Designer and an Acquisition 
Server. Scenario Designer consists of a user-friendly 
interface, where the user can develop their data flows in a 
tree view environment. “Box algorithms” implement a list of 
existing algorithms, which are the building blocks of 
OpenVibe scenarios. Acquisition Server provides drivers for 
direct communication between software and mostly used 
BCI devices. The flowchart of the proposed approach is 
presented in Fig. 1. 

 

 
Figure 1.  Flowchart of the proposed EEG classification approach. 

As it is shown in Fig.1 the training phase and the testing 
phase performs individually. According to the OpenVibe 
architecture the training phase take place in off-line mode, 
employing the training dataset. Indeed, in most of the cases, 

the classification procedure need computation effort, and it is 
extremely time consuming to operate in real time. Thus, 
training scenario is employed off-line producing an XML 
structured file, which contains training parameters. During 
the testing “classification processor” box deploy the 
knowledge of XML for real time EEG signal classification. 
Testing EEG signal is imported to the testing scenario using 
the Acquisition Server. 

A. Training Phase 
During the training phase training dataset, well known 

EEG signals denoted as Z, O, N, F and S (see Section III for 
the description of EEG dataset) are employed to train the 
classification algorithm. Next, EEG signal epochs are 
extracted to compute features of each one of them. Both 
time-based and spectral features are computed for the 
classification problem. Finally, the classifier is used to 
extract knowledge for the testing phase. 

 
1)  Input Signal 

For training signal importing the “CSV file reader” box is 
used. Already retrieved EEG signal could be used as training 
dataset. In our case, five different EEG signals (one for each 
class) should be imported. The features for each one EEG 
signal will be inserted in different inputs of the classifier. 
Thus, all EEG signal which belong to the same class should 
be merge into one. Although the procedure is off-line 
executed, the input of EEG dataset is utilized in a real-time 
simulation. As a result, duration of training phase will be 
equal to the duration of the whole input EEG signal plus the 
duration of classification algorithm execution.  

 
2) Time Epoching 

Time epoching is commonly used method instead of 
extracting simple fragment of EEG signal. Using epoching 
discontinuity of EEG signal fragment are avoided. Actually, 
epochs are EEG signal 'slices' which length is configurable, 
as is the time offset between two consecutive epochs. The 
proposed approach employs a “Time Based Epoching” box, 
where each epoch last for 1 sec, while the interval offset is 
0.5 sec. 

 
3) Feature Extraction 

To feed the classification algorithm several features have 
been extracted from each epoch of the EEG signal. In total 
11 features, have been used for the proposed approach. Six 
of them are statistic values of the EEG signal epoch such as: 
mean value of epoch, variance of epoch etc. provided 
directly by the “Univariate Statistics” box of the designer. 
The six output of “Univariate Statistics” box is directly input 
to a “Feature Aggregator”, which put all the feature together 
(In the output of “Feature Aggregator” each feature are the 
columns and epochs are the rows). Apart from time based 
feature, spectral features are also extracted. In current work a 
“Spectral Analysis” box, which is based on Fast Fourier 
Transform (FFT), is used in the whole image. Then, the 
amplitude of FFT, inputs to “Frequency Band Selectors” 
where the EEG signal spectrum is split into five bands.  
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Figure 2.  Training Scenario for 5-classes EEG classification problem.

 
These bands have been defined according to brain wave 

frequencies which are recorded with an EEG:  
• Alpha (a) waves frequency: 8-12 Hz. 
• Beta (b) waves frequency: 12-25 Hz. 
• Theta (g) waves frequency: 4-8 Hz. 
• Delta (d) waves frequency 1-4 Hz. 
Finally, a “Spectrum Average” box calculates the 

average of spectral amplitude per band and lead to the 
feature to “Feature Aggregator”. Details of extracted features 
are presented in Table I. 

TABLE I.  TIME AND SPECTRAL -BASED FEATURE FOR EEG 
CLASSIFICATION. 

 
Features Details 

Feature Type Feature Description 

1 

Time Based 
Features 

Mean value of EEG signal epoch 

2 Variance of EEG signal epoch 

3 Range of EEG signal epoch  

4 Median value of EEG signal epoch 

5 Inter- Quantile-Range 

6 Percentiles (30%) 

7 

Spectral 
Features 

Spectrum Amplitude for Band (1-4 Hz)  

8 Spectrum Amplitude for Band (4-8 Hz) 

9 Spectrum Amplitude for Band (8-12 Hz) 

10 Spectrum Amplitude for Band (12-25 Hz) 

11 Spectrum Amplitude for Band (25-40 Hz) 

 
 

 
4) Classification 

For the classification, the linear discriminant analysis 
(LDA) algorithm is employed [12,13,15]. The aim of LDA is 
to use hyperplanes to separate the data representing the 
different classes. The strategy generally used for multiclass 
BCI is the “One Versus the Rest" strategy which consists in 
separating each class from all the others [13]. 

Training Scenario is detailed presented in Fig. 2. In case 
of 5-classes problem for the classification of the current 
dataset, “Classifier Trainer” box requires one input for each 
class. As a result, five different blocks for feature extraction 
are need. As it is shown in Fig.2 “CSV File writers” have 
been also used to extract the features of each class into csv 
format for further processing. 

B. Testing Phase 
Since the training phase has been off-line completed and 

the XML has been generated, new signal can be imported in 
the testing scenario via the Acquisition Server. In case of the 
testing, epoching is not required, so that the features must be 
extracted directly from the EEG signal per each second. All 
the boxes for feature extraction of the training scenario are 
also employed, however only one block of these boxes is 
enough to calculate the features of one input EEG signal.  

Fig. 3 illustrates the Testing Scenario, where an 
Acquisition Server feeds a new input (EEG signal) for 
classification in one of the five classes. Each epoch of the 
new signal is classified according to the extracted knowledge 
of the training phase. 

Fig. 4 and 5 show two examples of what the Testing 
Scenario offers for real-time visualization of EEG signal and 
spectrum.  
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Figure 3.  Testing Scenario for EEG signal classification. 

 

Figure 4.  Example of visualization of EEG signal in real-time. 

 

Figure 5.  Example of visualization of EEG spectrum in real-time. 

III. DATASETS AND RESULT 
For the evaluation of the proposed approach a well-

known dataset with EEG signals is employed [14]. The 
signal is categorized as Z, O, F, N and S, where each one 
consists of 100 single channel segments of signals of 23.6-
sec duration. All the signals were recorded with the same 
128-channel amplifier system using a sampling rate of 
173.61 Hz. The signals were selected and cut out from 
continuous multichannel EEG recordings after visual 
inspection for artifacts. Signals Z (eyes open) and O (eyes 
closed) have been recorded from healthy volunteers, which 
were relaxed in an awake state. Signals N, F, and S have 
been recorded during a pre-surgical diagnosis. Only signals 
from S contains seizure activity, while N and F were 
recorded from within the epileptogenic zone, and from the 
hippocampal formation of the opposite hemisphere, 
respectively. 

For the evaluation of the proposed approach standard 
classification performance metrics have been used including 
for each class: True Positive Rate (TPR) and Positive 
Predictive Value (PPV). 
                           

#
#i

of samples of class i classified in class i
TPR

total of samples in class i
= . (1) 

                           
#

#i
of samples of class i classified in class i

PPV
total of samples classified in class i

= . (2) 

 
Results are obtained during the training phase, using the 

10-fold cross validation technique. Table II shows the 
confusion matrix for 5-classes problem, as well as the TPR 
and the PPV for each class. 

TABLE II.  RESULTS FOR 5-CLASSES PROBLEM 

 

Classification  

Z O N F S TPR % 

E
E

G
 S

ig
na

ls 

Z 3502 559 314 173 0 77.00 

O 964 3411 23 155 0 74.93 

N 323 114 2865 1237 9 63.00 

F 191 64 2333 1819 141 40.00 

S 86 114 136 300 3911 86.00 

 PPV % 69.12 80.04 50.52 49.38 96.30  

 
Furthermore, the overall classification accuracy (ACC) 

was also calculated: 
 

#
#

of correctly classified samples
ACC

total of samples
= . (3) 
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IV. DISCUSSION 
In this paper, we have explored the capability of the 

OpenViBE platform to develop an EEG classification 
approach for short-term epilepsy prognosis. The obtained 
results indicated that the proposed approach can address the 
problem of classification of EEG signals related to epileptic 
activity. This approach offers all the required tools for real-
time EEG signal acquisition, processing and visualization. 
The main merits of the proposed approach are: the 
modularity, the tools for visualization of the EEG signal and 
spectrum as well as the various tools provide to the different 
types of user, such as the acquisition server or the pre-
configured scenarios.  

An extension of the proposed approach to automatically 
detect epileptic seizures in long-term EEG signals, and 
subsequently, classify them into different epileptic categories 
will be of high clinical value. In addition, other existing EEG 
classification techniques for epileptic seizure detection or 
prediction, not presently utilized for BCI purposes, could be 
investigated and may prove to be worthwhile [13]. Finally, it 
should be pointed out that once BCI will be more extensively 
used in daily clinical practice, new properties will have to be 
thought carefully, such as the availability of large EEG 
datasets or long term variability of EEG signals related to 
epilepsy.  
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