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Abstract—Alzheimer’s disease and Frontotemporal 

dementia are the two most reported dementia cases.  They both 

are neurodegenerative disorders without cure while existing 

treatments only halt their progress. Thus, early detection is of 

crucial importance. In this work, we utilize 

electroencephalographic signals of AD and FTD patients and 

propose a classification pipeline to distinguish them from 

healthy signals. This pipeline consists of Independent 

Component Analysis as a preprocessing stage, the extraction of 

time, frequency and complexity features, feature elimination 

through importance ranking and finally classification through 

utilizing Gradient Boosting Decision Trees. The proposed 

methodology achieved 92.27% F1 score in the Dementia versus 

Control problem, 83.06% in the AD versus Control and 80.67% 

in the FTD versus Control.  

Keywords—EEG, Alzheimer’s Disease, Frontotemporal 

dementia, lightGBM, Classification  

I. INTRODUCTION 

Dementia is a wide group of neurodegenerative brain 
disorders that leads to cognitive impairment and interferes 
with social and occupational functioning [1]. The occurrence 
of dementia increases in frequency with age and its treatment 
is based on therapies that slow the progress of the illness or 
manage symptoms. Alzheimer’s disease (AD) is the most 
common type of dementia and it involves severe memory 
loss, cognitive impairment and changes in behavioral 
changes [2]. Another common type of dementia is the 
Frontotemporal (FTD), which causes focal degeneration in 
the frontal lobe, anterior temporal lobe and islet. 

Despite Alzheimer’s disease severity of impact, its 
diagnosis typically occurs after the patient has already started 
developing symptoms. Brooker et al. report that memory 
clinic facilities availability covers only 50% of the EU 
population, while only 43% of countries reported having 
specific policies to accommodate the diagnosis at an earlier 
stage [3]. Usually, dementia diagnosis procedures involve the 
detection of multiple concurrent symptoms along with 
cognitive ability assessment of patients through 

questionnaires and tests. Other methods of detecting AD and 
cases of dementia involve the employment of 
neurophysiological data and neuroimaging techniques. The 
most common imaging methods utilized are the Magnetic 
Resonance Imaging (MRI) and single-photon emission 
tomography (SPET). Although such methods are not 
commonly employed by clinics, there is strong evidence that 
they can contribute significantly for accurate and early 
diagnosis as well as prediction of dementia onset. 

EEG is yet another tool that is utilized for the 
discrimination of dementia. Automated EEG diagnosis is 
under scientific exploration over the past 2 decades with 
increasing interest mainly because it is a non-invasive tool 
that has good temporal resolution and is sensitive enough for 
the classification of dementia severity [4]. Additionally, its 
low cost, consumer availability and the fact that it is faster 
than other neuroimaging techniques makes its use especially 
desirable in the medical field. 

Many Alzheimer studies through EEG focus on the 
frequency changes of signals. Power increase in low 
frequency bands delta and theta along with decrease in alpha 
and beta -EEG slowing- is considered an Alzheimer or other 
dementia indicator [5]. Additionally, in the recent years 
complexity features such as entropy and fractal dimensions 
have gained interest as they reflect and incorporate better the 
high complex dynamics of the brain while being greatly 
influenced by functional changes in the brain of dementia 
patients [5]. 

Moreover, a wide variety of supervised machine learning 
algorithms have been employed [6]  for the detection of AD 
and FTD, as well as their discrimination. Most methodologies 
use ensemble methods like Random Forest [7] or Support 
Vector Machines (SVM) [8]. Recently, deep learning 
methods such as Recursive Neural Networks and 
Transformers Neural Networks [9] or Gradient Boosting 
methods such as XGBoost [10] and lightGBM [11] have 
gained popularity due to the increase of the computational 
power of current processing units. 

This paper proposes a methodology that utilizes the 
Independent Component Analysis (ICA) for the signal 
clearing and combines the reliability of time and frequency 
domain features with the capabilities of the complexity 
features. Also, the lightGBM is hired, which is a Gradient 
Boosting Decision Tree (GBDT) algorithm. The 
hyperparameters of this algorithm are optimized via a 
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Bayesian optimization with Gaussian processes. The feature 
vector of this classification pipeline is reduced using a feature 
importance ranking acquired from a non-optimized lightGBM 
classifier. The performance of this analysis is evaluated 
through the Leave One Patient Out (LOPO) validation method 
that ensures that there is no bias towards the classification 
results that could occur due to the simultaneous existence of 
the same participant data time windows in both the training 
and the test set. 

II. MATERIALS AND METHODS 

The proposed methodology is described in this section. 
This methodology is consisted of the data acquisition 
procedure, the preprocessing routine, the feature extraction 
process, and the machine learning stage. A summary of the 
whole methodology can be found in Fig 1. 
 

A. Database Description and Data Acquisition 

The participant’s pool for this study consisted of 32 
subjects: 14 patients that were affected by Alzheimer’s 
disease (8 male and 6 female), 10 patients that were affected 
by Frontotemporal dementia (6 male and 4 female) as well as 
8 healthy subjects that comprised the Control group (CN) (4 
male and 4 female). The patients were classified as Alzheimer 
(AD) or Frontotemporal (FTD) according to the World 
Health Organization Standard. The Mini Mental State 
Examination (MMSE) score has been used as a descriptor for 
the evaluation of the cognitive decline and the functional 
performance of the patients [12]. Also, the Clinical Dementia 
Rating [13] is provided for AD and FTD patients. The 
statistical details of the participants are presented in Table 1. 
The EEG recordings were obtained from the 2nd Department 
of Neurology of AHEPA General University Hospital of 
Thessaloniki. The EEG device used was the Nihon Kohden 
EEG 2100 that provides 19 scalp electrodes and 2 reference 
electrodes placed on the mastoids. The electrode locations are 
(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, 
P4, T6, O1 and O2). An impendence value below 5kΩ was 
ensured throughout the duration of the recordings. 
Participants were placed in a sitting relaxed position, with 
their eyes closed. The sampling rate was 500 Hz. The 
duration of the recordings was 11-17 minutes (mean 13) for 
the dementia groups and 20-23 (mean 21) for the control 
group. 

B. Preprocessing 

This section describes the preprocessing protocol that was 
implemented for every EEG recording. First, the EEG signal 
was re-referenced to the reference electrodes A1, A2 that were 
placed on left and right earlobe, respectively. Then, a 4th order 
Butterworth FIR filter was applied at 0.4-47 Hz, so that power 
line noise interference could be removed (line noise in Europe 
is at 50 Hz). Furthermore, an ICA decomposition was 
performed using the runICA algorithm in the EEGLAB, 
Matlab environment [14]. ICA is a well-established method 
for artifact rejection in neurophysiological datasets [15]. ICA 
functionality is based on the assumption that the electric 
dipoles in the cortex can be modelled as independent sources 
[16]. Thus, artifacts can be independent components based on 
their special properties and can be rejected. So, after the ICA 
decomposition has taken place, the components get labeled 

via a pretrained classifier, namely ICLabel [17], included in 
the EEGLAB platform, and are classified as eye, muscle or 
line artifacts and brain components. The components that are 
classified as artifacts with a probability >0.9 are automatically 
rejected. It should be noted that, even in a resting state eyes 
closed recording, eye artifacts can exist due to eye movement. 
Especially patients with severe cognitive impairment are 
having a hard time keeping their eye movement minimal, as 
observed during the recording stage, so the ICA preprocessing 
stage is important to ensure that the high classification 
accuracy is not achieved due to the eye artifacts but rather due 
to the brain components.  

C. Feature Extraction 

Useful classification features were extracted from the 
preprocessed EEG signals in this stage. Every part of this 
methodology was implemented with the Python library MNE 
[18]. First, the signals were divided in 4 second time windows 
with 2 second overlap. This time windows are also called 
epochs. Given that the lower useful frequency is 0.5 Hz, it is 
essential that the minimum duration of an epoch is 4 second.  

Then, frequency domain, time domain, entropy and fractal 
dimension features were calculated for each epoch. For the 
frequency domain characteristics, the Power Spectral Density 
(PSD) was estimated using the Welch method that segments 
the signal in non-rectangular Hamming windows. For L time 
windows a periodogram of the mth time window is defined by 
the equation 1. 
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Then, for the frequency domain features, the relative power of 
each of the main 5 frequency bands was calculated for each 
electrode. The brain rhythms were defined as: 

• Delta: 0.5 – 4 Hz 

• Theta: 4 – 8 Hz 

• Alpha: 8 – 13 Hz 

• Beta: 13-25 Hz 

• Gamma: 25-45 Hz 

The time domain characteristics that were extracted for 
each epoch were: mean, standard deviation, skewness and 
kurtosis. The entropy characteristics were Permutation, 
Spectral, Singular Value Decomposition (SVD), approximate 
and sample entropy and the Hjorth features namely Mobility 
and Complexity. Finally, the fractal dimension features were 

Table 1. Demographics of the Participants 

  
Gender 

(Male/Female) 
Age MMSE CDR 

Disease 

Duration 

in 

Months 

AD  8/6 
70.5 
(7.1) 

19.7 
(2.76) 

1 
(0.54) 

24 (9.88) 

FTD 6/4 
67.5 
(4.5) 

21.5 
(1.83) 

0.75 
(0.26) 

26 (9.24) 

CN  4/4 
68.5 
(7.2) 

30 (0) - - 

 



Petrosyan, Katz, Higuchi fractal dimension and Detrended 
Fluctuation. In total 20 (5 frequency domain + 4 time domain 
+ 7 entropy + 4 fractal dimension) * 19 electrodes = 380 
features were extracted. The entropy and fractal dimension 
characteristics were extracted using the AntroPy Python 
library. Spectral and time characteristics are vastly used in the 
EEG research for neurodegenerative diseases [19], [20] and 
cognitive disorders [21]. Entropy [22] and fractal dimensions 
[23] have also had significant importance in the field. 
Nevertheless, their combined use is not common.  

D. Classification 

The classification pipeline is described in this section. It is 
comprised of the feature selection step, the hyperparameter 
optimization step and the classification step. The three 
classification problems that were explored are: Alzheimer’s 
group versus control group (AD/CN), Frontotemporal 
Dementia group versus control group (FTD/CN) and 
Dementia group versus control group (AD+FTD/CN). 

1) Classification Algorithm 

The classification algorithm that has been used in this 
experiment is a GBDT ensemble model that has been 
proposed and implemented from Microsoft Research team 
[24]. In a GBDT model, the decision trees are trained in 
sequence based on their residual errors (negative gradients) 
from the original value (for regression) or from the log (class 
probability) plus the pseudo residual from all the decision 
trees created in the previous steps. Considering a regression 
problem, and F(x) the target approximation function for the 
F*(x), where  ! = "�# , $#%��  the training dataset, gradient 
boosting tries to minimize a loss function L(y, F(x)). F(x) is 
an iterative weighted sum [25] ���&	 = �����&	 ' (�ℎ��&	 (2) 

and ρm is the weight of the mth  h(x). The approximation of the 
first function is normally the average of the training classes 
values. Each next approximation is trained on a new dataset ! = "�# , *�#%#���  where rmi are the pseudo residuals for the step 
m and calculated as: 
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The lightGBM implementation proposes a novel method to 
rank the absolute values of the training instances residual 

errors and discard the least informative one called Gradient-
based One-Side Sampling (GOSS). It also introduces a 
method to effectively reduce the number of features called 
Exclusive Feature Bundling. The documentation of these 
methodologies can be found in the work of Guolin et al. [24].   

2) Feature Selection 

To perform feature reduction a simple SelectFromModel 
wrapper method from the scikit-learn python package was 
implemented. A lightGBM classifier with the default 
configuration was selected. The default configuration leaves 
aside the GOSS technique and produces a traditional GBDT. 
After the feature importance is calculated, we discarded every 
feature that does not exceed 1,5* mean feature importance. 

3) Hyperparameter Optimization  

For the optimization of the classification algorithm’s 
hyperparameters, a Bayesian optimization with Gaussian 
processes was used by the scikit optimize library 
(gp_minimize). The default settings were used which include 
a Matern kernel with automatically tuned hyperparameters 
and the acquisition function gp_hedge. The hyperparameter 
space of which the optimal values obtained were: 

• learning_rate : 0.01 – 1.0 

• num_leaves: 2 – 500 

• max_depth: 1 – 500 

• min_child_samples: 0 - 200 

• max_bin: 100 - 100000 

• subsample: 0.01 – 1.0 

• subsample_freq: 0 – 10 

• colsample_bytree: 0.01 – 1.0 

• subsample_for_bin : 0.01 – 1.0 

• reg_lambda: 1e-9 – 1000 

• reg_alpha: 1e-9 – 1.0 

• n_estimators: 10 - 10000 

Fig 1. Flowchart of the Proposed Methodology 

 

Table 2. Classification results 

Problem ACC SENS SPEC F1 AOC 

AD / CN 79.64% 83.52% 73.88% 83.06% 0.863 

FTD / CN 82.67% 75.23% 89.56% 80.67% 0.925 

AD+FTD/CN 89.72% 95.34% 72.75% 92.27% 0.941 

 



 

The following parameters were set as constants: 
min_child_weight = 2 (for stability issues) and boosting_type 
= ”goss”. 

4) Validation Method and Performance Metrics 

To measure the performance of the methodology, the 
LOPO validation method was implemented. For each 
participant X, test set =  8� ∀ 8 ∈  X, 8*<=�=�> ?�8 =8@ ∀ 8 ∉ B, where t a time window. The performance metrics 
used were : Accuracy (ACC), Sensitivity (SENS), Specificity 
(SPEC), F1 score (F1) and Area Under Curve (AOC). 

III. RESULTS 

In this section, the results of the classification pipeline are 
presented. Firstly, the feature selection step reduced the 
number of features from 380 to 78 for the AD/CN problem, 
50 for the FTD/CN and 56 for the AD+FTD/CN. Figure 2 
provides an indicative rating for the 78 AD/CN features as 
selected by the feature selection step. Table 2 presents the 
classification results for every problem. The F1 score 
achieved for the AD/CN was 83.06%, for the FTD/CN was 
80.67% while for the AD+FTD/CN the F1 score was 
significantly higher at 92.67%, outperforming the other two 
problems. Furthermore, the AD/CN achieved 79.64% ACC 
(83.52 SENS, 73.88% SPEC), the FTD/CN achieved 82.67 
% ACC (75.23% SENS, 89.56% SPEC) and the 
AD+FTD/CN achieved 89.72% ACC (95.34% SENS, 
72.75% SPEC). Figure 3 presents the Receiver Operating 
Characteristic (ROC) curve for the three problems.  
 

IV. DISCUSSION 

A robust methodology for Alzheimer’s disease and 
Frontotemporal dementia recognition through EEG signal was 
presented in this paper that achieves high performance results 
(92.27% F1 score) at the dementia detection problem. 
Although there are multiple neuroimaging techniques that can 
be employed to aid the diagnosis of dementia utilizing 
quantitative data such as Magnetic Resonance Imaging [26] 
and Positron Emission Tomography [27], EEG has the 
advantage of being cheaper and easier to perform while 
making use of its better temporal resolution compared to the 
other methods. In this context, automated EEG analysis is 
deemed to play a crucial role in neurodegenerative diseases 
diagnosis. Also, the employment of Machine Learning 
algorithms can perform recognition of the disease severity. 

There are multiple studies that explore the 
distinguishability of EEG signals recorded from Alzheimer 
patients or other dementias against healthy subjects. The 
novelty of these studies can be at the classification 
methodology [28] i.e., using modern neural network 
implementations and novel gradient boosting algorithms like 
lightGBM [29] or at the signal analysis procedure by using 
novel combinations of methodologies of signal analysis like 
Time-Frequency decompositions such as Discrete Wavelet 
Transform [30] and Empirical Mode Decomposition [31] and 
extracted features. However, a limitation of multiple 
methodologies is the use of k-fold cross validation for the 
calculation of the performance metrics when using time 
windows [32]. Moreover, studies focus on extracting specific 
features such as permutation entropy [33] or a certain fractal 
dimension characteristic [34]. However, the computational 
cost of extracting multiple (as many as possible) 
characteristics and performing an automatic feature selection 
procedure in a modern computer is minimal and should not be 
considered a limitation. In this study, we employed one of the 
most innovative tree ensemble algorithms, lightGBM. We 
also capitalized on a wide range of characteristics such as 
spectral, time, entropy and fractal dimension features while 
performing dimensionality reduction through the algorithm’s 
build in feature importance ranking. 

The performance metrics of the classification for all the 
classification problems were comparable with other similar 
works that use LOPO as their validation method [19], [35]. 
The best classification F1 score was acquired for the 
AD+FTD/CN problem (92.27%) followed by AD/CN 
(83.06%) and FTD/CN (80.67%). On the contrary, even 

Fig 2. Feature Importance’s 

 

Fig 3. ROC curves of all three problems 

 



though AD+FTD/CN achieved the higher accuracy (89.72%), 
the FTD/CN achieved higher accuracy (82.67%) than the 
AD/CN (79.64%), something that could be a warning that the 
dataset should be better balanced. Finally, the FTD/CN 
problem outperformed the AD/CN problem in terms of AUC 
score (0.925 vs 0.863) indicating that the Frontotemporal 
dementia is overall easier to detect through EEG than the 
Alzheimer’s disease. 

The selection of the lightGBM algorithm was not made 
arbitrarily. Multiple studies have highlighted the effectiveness 
of ensemble tree-based algorithms like Random Forest, on 
Alzheimer’s recognition [19], [20] (along with Support Vector 
Machines). Comparative analysis shows that light GBM is the 
fastest gradient boosting algorithm. [36]. Therefore, this 
algorithm was the best fit amongst all other tree ensemble 
classifiers for this preliminary study. However, a more 
thorough comparative study using multiple tree-based 
algorithms should be performed to accurately evaluate the best 
suitability for these classification problems. 

Another limitation of this study that should be addressed 
is the limited size of the dataset. The number of participants 
used in this study is small and bias towards the performance 
metrics might occur. Hence, our following work will utilize a 
much larger dataset. Furthermore, the time window sizing was 
set at 4 second in an arbitrary manner. Despite the fact that 
there is no commonly accepted duration size window 
proposed and accepted, most studies set a time window size 
around 4 seconds. The exact size of the time window for 
maximizing the classification performance should be explored 
in future studies. 

V. CONCLUSIONS 

In this study, we presented a comprehensive methodology 
for distinguishing EEG signals between 2 conditions; AD/CN, 
FTD/CN and AD+FTD/CN. An ICA decomposition was 
employed for the artifact rejection procedure while multiple 
features from time and frequency domain, such as entropy and 
fractal dimensions were used to create the classification 
dataset. After a feature reduction step, a lightGBM 
implementation achieved high classification performance for 
each one of the three problems, namely 83.06% for AD/CN, 
80.67% for FTD/CN and 92.27% for AD+FTD/CN.  
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